Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Rock magnetic and paleointensity results from Mesozoic baked contacts of Armenia


Samples were obtained from three baked contacts and one lava flow along the upper Turonian-lower Coniacian Tovuz section, two baked contacts along the upper Coniacian-lower Santonian Paravakar section in the northern part of Armenia, and three baked contacts along the Titonian-Valanginian Kafan section in southern Armenia. A total of 130 samples were studied. Updated mean paleomagnetic poles were calculated for the Upper Cretaceous Tovuz-Paravakar sections (65.6°N, 162.2°E, A95 = 4.3, paleolatitude = 27.0 ± 3.4°) and the Upper Jurassic-Lower Cretaceous Kafan section (61.7°N, 158.9°E, A95 = 4.8°, paleolatitude = 24.7 ± 3.8°). Paleointensity determinations could be estimated from two of the upper Cretaceous and three of the Upper Jurassic-Lower Cretaceous baked contacts, corresponding to a 30% success rate. The mean virtual dipole moments obtained were low (1.7-5.5 × 1022 A m2), which is in agreement with data published by Bol’shakov and Solodovnikov (1981a, 1983) for the same sections (3.0-4.4 × 1022 A m2). Our results support the hypothesis of the Mesozoic Dipole Low, even though the overall data are widely dispersed.


  1. Avanesyan, A. S. and M. A. Avanesyan, Tectonic zonation of Armenia, in Investigation of geological conditions of possible sites for radioac tive waste disposal, edited by Gukasyan, Yu A., Funds of Institute of Geological Research Armenian National Academy of Science, 2006 (in Armenian).

  2. Biggin, A. and D. N. Thomas, The application of acceptance criteria to results of Thellier palaeointensity experiments performed on samples with pseudo-single-domain-like characteristics, Phys. Earth Planet. In ter., 138, 279–287, 2003.

  3. Bol’shakov, A. S. and G. M. Solodovnikov, Intensity of the geomagnetic field in Late Cretaceous time, Izv. Earth Phys., 17, 754–761, 1981a.

  4. Bol’shakov, A. S. and G. M. Solodovnikov, Geomagnetic field intensity in last 400 million years, Doklady AS USSR, 260(6), 1340–1343, 1981b.

  5. Bol’shakov, A. S. and G. M. Solodovnikov, Geomagnetic field intensity in Armenia in the Late Jurassic and Early Cretaceous, Izv. Earth Phys., 19, 976–982, 1983.

  6. Chubaryan, H. A. and M. A. Arakelyan, Geological structure of the water shed of middle streams of Agstev and Mehrab rivers, Summary report, Armenian Geological Funds, Yerevan, 1962 (in Armenian).

  7. Coe, R. S., The determination of paleointensities of the Earth magnetic field with special emphasize on mechanisms which could cause nonideal behavior in Thellier method, J. Geomag. Geoelectr., 19, 157–179, 1967.

  8. Coe, R. S., C. S. Gromme, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

  9. Cottrell, R. D. and J. A. Tarduno, In search of high-fidelity geomagnetic paleointensities: A comparison of single plagioclase crystal and whole rock Thellier-Thellier analyses, J. Geophys. Res., 105, 23,579–23,594, 2000.

  10. Day, R. S., M. Fuller, and V. A. Schmidt, Hysteresis properties of titano-magnetites: grain size and composition dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.

  11. Dunlop, D. and O. Ozdemir, Rock magnetism. Fundamentals and frontiers, Cambridge University Press, 573 pp., 1997.

  12. Gendler, T. S., V. P. Shcherbakov, M. J. Dekkers, A. K. Gapeev, S. K. Gribov, and E. McClelland, The lepidocrocite-maghemite-haematite re action chain-I. Acquisition of chemical remanent magnetization by maghemite, its magnetic properties and thermal stability, Geophys. J. Int., 160, 815–832, 2005.

  13. Goguitchaichvili, A., L. M. Alva-Valdivia, J. Urrutia, J. Morales, and O. F. Lopes, On the reliability of Mesozoic Dipole Low: New absolute paleointensity results from Parana Flood Basalts (Brazil), Geophys. Res. Lett., 29, 331–334, 2002.

  14. Goguitchaichvili, A., L. M. Alva-Valdivia, J. Rosas-Elguera, J. Urrutia-Fucugauchi, and J. Sole, Absolute geomagnetic paleointensity after the Cretaceous Normal Superchron and just prior the Cretaceous-Tertiary transition, J. Geophys. Res., 109, B01105, 2004.

  15. Hakobyan, V. T., Stratigraphy of Jurassic and Cretaceous sedimentary rocks of the north-eastern part of Zangezour, Academy of Science Ar menian SSR. Yerevan, 1963 (in Russian).

  16. Heunemann, C., D. Krasa, E. L. Gurevitch, H. C. Soffel, and V. Bachtadse, Directions and intensities of the Earth’s magnetic field during a reversal: results form the Permo-Triassic Siberian trap basalts, Russia, Earth Planet. Sci. Lett., 218, 197–213, 2004.

  17. Johnson, H. P. and R. T. Merrill, Low-temperature oxidation of a titanomagnetite and the implication for palaeomagnetism, J. Geophys. Res., 78, 4938–4949, 1973.

  18. Juarez, M. T., L. Tauxe, J. S. Gee, and T. Pick, The intensity of the Earth’s magnetic field over the past 160 million years, Nature, 394, 878–881, 1998.

  19. Khramov, A. N. ed., Paleomagnetic Directions and Paleomagnetic Poles: Data for USSR, Issue 3. Materials of the WDC-B, Moscow, 44 pp., 1975 (in Russian).

  20. Khramov, A. N., Paleomagnetic Directions and Paleomagnetic Poles; Data for USSR, Issue 6. Materials of the WDC-B, Moscow, 39 pp., 1986 (in Russian).

  21. Khramov, A. N., Paleomagnetic Directions and Paleomagnetic Poles; Data for USSR, Issue 7. Materials of the WDC-B, Moscow, 29 pp., 1989 (in Russian).

  22. Kobayashi, K., Crystallization or chemical remanent magnetization, Proc. Benedum Earth Magnetism Symp., University of Pittsburg, 107–112, 1962.

  23. Kosterov, A. A., M. Perrin, J. M. Glen, and R. S. Coe, Paleointensity of the Earth’s magnetic field in early Cretaceous time: the Parana basalt, Brazil, J. Geophys. Res., 103, 9739–9753, 1998.

  24. McElhinny, M. W. and P. L. McFadden, Paleomagnetism: continents and oceans, Int. Geophys. Ser., 73, Academic, San Diego, Calif., 386 pp., 2000.

  25. McFadden, P. L. and M. W. McElhinny, Classification of reversal test in paleomagnetism, Geophys. J. Int., 103, 725–729, 1990.

  26. Nguen, T. K. T., The substantiation of the reliability of the paleomagnetic data under the solving of the paleotectonic tasks, PhD Thesis disserta tion, Institute of Earth Physics, Moscow, 1978 (in Russian).

  27. Pechersky, D. M. and T. K. T. Nguen, Paleomagnetism of volcanites of the Ophiolite Series and Late Cretaceous Effusive Rocks of Armenia, Izv. Earth Phys., 14, 192–202, 1978.

  28. Perrin, M. and V. P. Shcherbakov, Paleointensity of the Earth’s Magnetic Field for the Past 400 Ma: Evidence for a Dipole Structure during the Mesozoic Low, J. Geomag. Geoelectr., 49, 601–614, 1997.

  29. Perrin, M. and E. Schnepp, IAGA Paleointensity database: Distribution and quality of the data set, Phys. Earth Planet. Inter., 147, 255–67, 2004.

  30. Perrin, M., M. Prevot, and E. A. Mankinen, Low Intensity of the Geomag netic Field in Early Jurassic Time, J. Geophys. Res., 96(B9), 14,197–14,210, 1991.

  31. Perrin, M., E. Schnepp, and V. P. Shcherbakov, Paleointensity database updated, Eos Trans. AGU, 79, 1998.

  32. Prévot, M., M. E. Derder, M. McWilliams, and J. Thompson, Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low, Earth Planet. Sci. Lett., 97, 129–139, 1990.

  33. Ruiz, R. C., A. Goguitchaichvili, S. E. Geuna, L. M. Alva-Valdivia, J. Solé, and J. Morales, Early cretaceous absolute geomagnetic paleointensities from Córdoba Province (Argentina), Earth Planets Space, 58, 1333–1339, 2006.

  34. Selkin, P. A. and L. Tauxe, Long-term variations in palaeointensity, Philos. Trans. R. Soc. Lond. A, 358, 1065–1088, 2000.

  35. Shcherbakov, V. P. and N. K. Sycheva, On the Variation in the Geomag netic Dipole over the Geologocal History of the Earth, Izv. Phys. Solid Earth, 42(3), 201–206, 2006.

  36. Shcherbakov, V. P., B. E. Lamash, and N. K. Sycheva, Monte-Carlo mod eling of TRM and CRM acquisition and comparison of their properties in an ensemble of interacting SD grains, Geophys. Res. Lett., 23(20), 2827–2830, 1996.

  37. Shcherbakov, V. P., V. V. Shcherbakova, Y. K. Vinogradov, and F. Heider, Thermal stability of pTRMs created from different magnetic states, Phys. Earth Planet. Inter., 126(1–2), 59–73, 2001.

  38. Shcherbakova, V. V., V. P. Shcherbakov, and F. Heider, Properties of partial thermoremanent magnetization in PSD and MD magnetite grains, J. Geophys. Res., 105(B1), 767–782, 2000.

  39. Shcherbakova, V. V., V. P. Shcherbakov, V. V. Vodovozov, and N. K. Sycheva, Paleointensity at the Permian-Triassic Boundary and in the Late Permian, Izv. Phys. Solid Earth, 41(11), 931–944, 2005.

  40. Shcherbakova, V. V., B. Z. Asanidze, V. P. Shcherbakov, and G. V. Zhidkov, Geomagnetic Field Paleointensity in the Cretaceous from Upper Cretaceous Rocks of Georgia, Izv. Phys. Solid Earth, 43(11), 951–959, 2007.

  41. Shmidt, A. I., H. H. Tonakanyan, A. S. Avanesyan et al., Compiling of predictive-metallogenic map of northern part of Armenia at scale 1:50 000, lists K-38-115 B,G,V-b,V-g, K-38-116 A-v,B-a, Summary report, Armenian Geological Funds, Yerevan, 1982 (in Russian).

  42. Smirnov, A. V. and J. A. Tarduno, Thermochemical remanent magnetiza tion in Precambria rocks Are we sure the geomagnetic field was weak?, J. Geophys. Res., 110, B06103, doi:10.1029/2004JB003445, 2005.

  43. Solodovnikov, G. M., Palaeointensity of the Early Triassic geomagnetic field, Izv. Phys. Solid Earth, 30, 815–821, 1995.

  44. Solodovnikov, G. M., Determination of the geomagnetic field intensity in the Santonian-Coniacian (Upper Cretaceous) from an Effusive Section in Azerbaijan, Izv. Phys. Solid Earth, 87, 600–606, 2001.

  45. Stacey, F. D. and S. K. Banerjee, The Physical Principles of Rock Mag netism, 195 pp., Elsevier, New York, 1974.

  46. Tarduno, J. A. and R. D. Cottrell, Dipole strength and variation of the time-averaged reversing and nonreversing geodynamo based on Thellier analyses of single plagioclase crystals, J. Geophys. Res., 110, B11101, doi:10.1029/2005JB003970, 2005.

  47. Tauxe, L. and H. Staudigel, Strength of the geomagnetic field in the Cre taceous Normal Superchron: New data from submarine basaltic glass of the Troodos Ophiolite, Geochem. Geophys. Geosyst., 5, 26–41, 2004.

  48. Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

  49. Uspenskaya, E. A., L. A. Burshteyn, and E. Y. Leven, Compiling of geological-structural basis at scale 1:50 000 for predactive-metallogenic map of Zangezour-Kapan Ore Zone, Armenian Geological Funds, Yere van, 1984 (in Russian).

  50. Yoshihara, A. and Y. Hamano, Palaeointensities determined from the mid dle Cretaceous basalt in Liaoning Province, northeastern China, Phys. Earth Planet. Inter., 142, 49–59, 2004.

  51. Yu, Y. and D. J. Dunlop, Palaeointensity determination on the late Pre-cambrian Tudor gabbro, Ontario, J. Geophys. Res., 106(B11), 26,331–26,348, 2001.

  52. Zhu, R., Y. Pan, J. Shaw, D. Li, and Q. Li, Geomagnetic palaeointensity just prior to the Cretaceous normal superchron, Phys. Earth Planet. Inter., 128, 207–222, 2001.

  53. Zhu, R., K. A. Hoffman, Y. Pan, R. Shi, and D. Li, Evidence for weak geomagnetic field intensity prior to the Cretaceous normal superchron, Phys. Earth Planet. Inter., 136, 187–199, 2003.

  54. Zhu, R., C.-H. Lo, R. Shi, Y. Pan, G. Shi, and J. Shao, Is there a precur sor to the Cretaceous normal superchron? New paleointensity and age determination from Liaoning province, northeastern China, Phys. Earth Planet. Inter., 147, 117–126, 2004a.

  55. Zhu, R., K. A. Hoffman, S. Nomade, P. R. Renne, R. Shi, Y. Pan, and G. Shi, Geomagnetic paleointensity and direct age determination of the ISEA (M0r?) chron, Earth Planet. Sci. Lett., 217, 285–295, 2004b.

  56. Zhu, R., C.-H. Lo, R. Shi, G. Shi, Y. Pan, and J. Shao, Palaeointensities determined from the middle Cretaceous basalt in Liaoning Province, northeastern China, Phys. Earth Planet. Inter., 142, 49–59, 2004c.

Download references

Author information



Corresponding author

Correspondence to V. P. Shcherbakov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shcherbakova, V.V., Perrin, M., Shcherbakov, V.P. et al. Rock magnetic and paleointensity results from Mesozoic baked contacts of Armenia. Earth Planet Sp 61, 23–39 (2009).

Download citation

Key words

  • Paleointensity
  • Armenia
  • Cretaceous
  • baked contacts
  • Thellier method