Skip to main content

Paleointensity data from Early Cretaceous Ponta Grossa dikes (Brazil) using a multisample method

Abstract

Definition of the long-term variation of the geomagnetic virtual dipole moment requires more reliable paleointensity results. Here, we applied a multisample protocol to the study of the 130.5 Ma Ponta Grossa basaltic dikes (southern Brazil) that carry a very stable dual-polarity magnetic component. The magnetic stability of the samples was checked using thermomagnetic curves and by monitoring the magnetic susceptibility evolution through the paleointensity experiments. Twelve sites containing the least alterable samples were chosen for the paleointensity measurements. Although these rocks failed stepwise double-heating experiments, they yielded coherent results in the multisample method for all sites but one. The coherent sites show low to moderate field intensities between 5.7±0.2 and 26.4±0.7 μT (average 13.4±1.9 μT). Virtual dipole moments for these sites range from 1.3±0.04 to 6.0±0.2 × 1022 A m2 (average 2.9±0.5 × 1022 A m2). Our results agree with the tendency for low dipole moments during the Early Cretaceous, immediately prior to the Cretaceous Normal Superchron (CNS). The available paleointensity database shows a strong variability of the field between 80 and 160 Ma. There seems to be no firm evidence for a Mesozoic Dipole Low, but a long-term tendency does emerge from the data with the highest dipole moments occurring at the middle of the CNS.

References

  1. Aitken, M. J., A. L. Allsop, G. D. Bussell, and M. B. Winter, Determination of the intensity of the Earth’s magnetic field during archaeological times: Reability of the Thellier technique, Rev. Geophys., 26, 3–12, 1988.

    Article  Google Scholar 

  2. Alva-Valdivia, L. M., A. Goguitchaichvili, J. Urrutia-Fucugauchi, J. Riis-ager, P. Riisager, and O. Ferreira-Lopes, Paleomagnetic poles and pa-leosecularvariation of basalts from Parana Magmatic Province, Brazil: geomagnetic and geodynamic implications, Phys. Earth Planet. Inter., 138, 183–196, 2003.

    Article  Google Scholar 

  3. Biggin, A. J. and D. N. Thomas, Does the Mesozoic Dipole Low Really Exist?, Eos, 84(11), 97, 103-104, 2003.

    Google Scholar 

  4. Coe, R. S., S. Grommé, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  5. Dekkers, M. J. and H. N. Bőhnel, Reliable absolute palaeointensities independent of magnetic domain state, Earth Planet. Sci. Lett., 248(1–2), 508–517, 2006.

    Article  Google Scholar 

  6. Ernesto, M., I. G. Pacca, F. Y. Hiodo, and A. J. R. Nardy, Palaeomagnetism of the Mesozoic Serra Geral Formation, Southern Brazil, Phys. Earth Planet. Inter., 64, 153–175, 1990.

    Article  Google Scholar 

  7. Ernesto, M., M. I. B. Raposo, L. S. Marques, P. R. Renne, L. A. Diogo, and A. De Min, Paleomagnetism, geochemistry and 40Ar/39Ar dating of the North-eastern Paraná Magmatic Province: tectonic implications, J. Geodyn., 28, 321–340, 1999.

    Article  Google Scholar 

  8. Goguitchaichvili, A., L. Alva-Valdivia, J. Urrutia-Fucugauchi, J. Morales, and O. Ferreira-Lopes, On the reliability of Mesozoic dipole low: new absolute paleointensity results from Paraná flood basalts (Brazil), Geo-phys. Res. Lett., 29(13), 1655, 2002.

    Article  Google Scholar 

  9. Gradstein, F., J. Ogg, and A. Smith, A Geologic Time Scale 2004, 589 pp., Cambridge Univ. Press, New York, 2004.

    Google Scholar 

  10. Granot, R., L. Tauxe, J. J. S. Gee, and R. Hagai, A view into the Cretaceous geomagnetic field analysis of gabbros and submarine glasses, Earth Planet. Sci. Lett., 256, 1–11, 2007.

    Article  Google Scholar 

  11. Heller, R., R. T. Merrill, and P. L. McFadden, The variation of intensity of earth’s magnetic field with time, Phys. Earth Planet. Inter., 131(3–4), 237–249, 2002.

    Article  Google Scholar 

  12. Hoffman, K. A. and A. J. Biggin, A rapid multiple-sample approach to the determination of absolute paleointensity, J. Geophys. Res., 110(B12), 2005.

    Google Scholar 

  13. Hoffman, K. A., V. L. Constantine, and D. L. Morse, Determination of absolute palaeointensity using a multi-specimen procedure, Nature, 339, 295–297, 1989.

    Article  Google Scholar 

  14. Kosterov, A., M. Perrin, J. M. Glen, and R. S. Coe, Paleointensity of the earth’s magnetic field in early Cretaceous time: the Paraná basalt, Brazil, J. Geophys. Res., 103, 9739–9753, 1998.

    Article  Google Scholar 

  15. Perrin, M. and E. Schnepp, IAGA paleointensity database: distribution and quality of the data set, Phys. Earth Planet. Inter., 147, 255–267, 2004.

    Article  Google Scholar 

  16. Prévot, M., M. E. M. Derder, M. McWilliams, and J. Thompson, Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low, Earth Planet. Sci. Lett., 97, 129–139, 1990.

    Article  Google Scholar 

  17. Raposo, M. I. B. and M. Ernesto, An Early Cretaceous paleomagnetic pole from Ponta Grossa dykes (Brazil): implications for the South America Mesozoic APWP, J. Geophys. Res., 100(B10), 20095–20109, 1995.

    Article  Google Scholar 

  18. Raposo, M. I. B., M. Ernesto, and P. R. Renne, Paleomagnetism and 40Ar/39Ar dating of the Florianópolis dike swarm, Santa Catarina Island, Brazil, Phys. Earth Planet. Inter., 108, 275–290, 1998.

    Article  Google Scholar 

  19. Renne, P. R., M. Ernesto, I. G. Pacca, R. S. Coe, J. Glen, M. Prévot, and M. Perrin, Rapid eruption of the Paraná food volcanics, rifting of southern Gondwanaland and the Jurassic-Cretaceous boundary, Science, 258, 975–979, 1992.

    Article  Google Scholar 

  20. Renne, P. R., K. Deckart, M. Ernesto, G. Fearaud, and E. M. Piccirillo, Age of the Ponta Grossa dike swarm (Brazil), and implications to Paraná food volcanism, Earth Planet. Sci. Lett., 144, 199–211, 1996.

    Article  Google Scholar 

  21. Riisager, P. and J. Riisager, Detecting multidomain magnetic grains in Thellier palaeointensity experiments, Phys. Earth Planet. Inter., 125(1–4), 111–117, 2001.

    Article  Google Scholar 

  22. Riisager, J., M. Perrin, R. Riisager, and D. Vandamme, Paleomagnetic results and palaeointensity of Late Cretaceous Madagascan basalt, J. Afr. Earth Sci., 32, 503–518, 2001.

    Article  Google Scholar 

  23. Ruiz, R. C., A. Goguitchaichvili, S. E. Geuna, L. M. Alva-Valdivia, J. Solé, and J. Morales, Early Cretaceous absolute geomagnetic paleointensities from Córdoba Province (Argentina), Earth Planets Space, 58, 1333–1339, 2006.

    Article  Google Scholar 

  24. Selkin, P. and L. Tauxe, Long-term variations in paleointensity, Philos. Trans. Roy. Soc. Lond., 358, 1065–1088, 2000.

    Article  Google Scholar 

  25. Shi, R., M. J. Hill, R. Zhu, H. He, and J. Shaw, Paleointensity determination and 40Ar/39Ar dating on the basalt from Chifeng, Inner Mongolia, Phys. Earth Planet. Inter., 152, 78–89, 2005.

    Article  Google Scholar 

  26. Tarduno, J. A. and R. D. Cottrell, Dipole strength and variation of the time-averaged reversing and non-reversing geodynamo based on Thellier analyses of single plagioclase crystals, J. Geophys. Res., 110(B11), 101, 2005.

    Google Scholar 

  27. Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, High geomagnetic intensity during the Mid-Cretaceous from Thellier analyses of single plagioclase crystals, Science, 291, 1779–1783, 2001.

    Article  Google Scholar 

  28. Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, The paleomagnetism of single silicate crystals: recording geomagnetic field strength during mixed polarity intervals, superchrons, and inner core growth, Rev. Geophys., 41, RG1002, 2006.

    Google Scholar 

  29. Tauxe, L., Long-term trends in paleointensity: the contribution of DSDP/ODP submarine basaltic glass collections, Phys. Earth Planet. Inter., 156, 223–241, 2006.

    Article  Google Scholar 

  30. Tauxe, L. and H. Staudigel, Strength of the geomagnetic field in the Cretaceous Normal Superchron: new data from submarine basaltic glass of the Troodos Ophiolite, Geochem. Geophys. Geosyst., 5(2), Q02H06, 2004.

    Google Scholar 

  31. Thellier, E. and O. Thellier, Sur l’intensité du champ magnetiqué terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

    Google Scholar 

  32. York, D., Least-square fitting of a straight line, Can. J. Phys., 44, 1079–1086, 1966.

    Article  Google Scholar 

  33. Zhu, R., K. Hoffman, Y. Pan, R. Shi, and L. Daming, Evidence for weak geomagnetic intensity prior to the Cretaceous normal subchron, Phys. Earth Planet. Inter., 136, 187–199, 2003.

    Article  Google Scholar 

  34. Zhu, R. X., K. A. Hoffman, S. Nomade, P. R. Renne, R. P. Shi, Y. X. Pan, and G. H. Shi, Geomagnetic paleointensity and direct age determination of the ISEA (M0r?) chron, Earth Planet. Sci. Lett., 217, 285–295, 2004a.

    Article  Google Scholar 

  35. Zhu, R. X., C.-H. Lo, R. P. Shi, G. H. Shi, Y. X. Pan, and J. A. Shao, Palaeointensities determined from the middle Cretaceous basalt in Liaoning province, northeastern China, Phys. Earth Planet. Inter., 142, 49–59, 2004b.

    Article  Google Scholar 

  36. Zhu, R. X., C. Lo, R. Shi, Y. Pan, G. Shi, and J. Shi, Is there a precursor to the Cretaceous normal superchron? New paleointensity and age determination from Liaoning province, northeastern China, Phys. Earth Planet. Inter., 147, 117–126, 2004c.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniele Brandt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brandt, D., Hartmann, G.A., Yokoyama, E. et al. Paleointensity data from Early Cretaceous Ponta Grossa dikes (Brazil) using a multisample method. Earth Planet Sp 61, 41–49 (2009). https://doi.org/10.1186/BF03352883

Download citation

Key words

  • Mesozoic Dipole Low
  • Cretaceous
  • paleointensity
  • Paraná basin