Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Magnetic properties and archeointensity determination on Pre-Columbian pottery from Chiapas, Mesoamerica


As part of the effort to establish an archeointensity variation curve for Mesoamerica, 13 archeologically well-identified pottery samples belonging to the Ocozocoautla site (Chiapas) were studied. Analyzed samples consist of ‘ofrenda type’ pottery fragments found in several caves. Three archeological intervals are involved: 450-100 B.C., 200–550 A.D. and 550–900 A.D. The Thellier method in its modified form was applied to small fragments previously embedded in salt pellets. Raw intensity values were further corrected for cooling rate effects. The common time-consuming TRM anisotropy correction protocol was substituted by an alternative approach during the paleointensity experiments. Forty-two specimens, belonging to six samples, yielded high-quality Thellier determinations. The NRM fraction f used for paleointensity determination ranges between 0.42 to 0.99, and the quality factor q (Coe et al., 1978) varies from 4 to 59, being normally greater than 5. These results correspond to data of good quality. The mean archeointensity values per pottery fragments range from 14.6±1.5 to 59.5±13.8 μT, while the corresponding virtual axial dipole moments range from 2.5±0.3 to 10.0±2.4 × 1022 A m2. These new data, although not numerous, are of high quality and definitively contribute to the Mesoamerican, still insipient, archeointensity database.


  1. Adams, R. M., Report on an archeological reconnaissance in the Central Highlands of Chiapas, Mexico, Project of the Department of Anthropology of the University of Chicago, Chicago, 1959.

  2. Agrinier, P., Mound 9 and 10 at Mirador, Chiapas, Mexico, Papers of the New World Archeological Foundation, Provo, Utah, 39, 1975.

  3. Aitken, M. J., L. J. Pesonen, and M. Leino, The Thellier paleointensity technique: Minisamples versus standard size, J. Geomag. Geoelectr., 43, 325–331, 1991.

  4. Bőhnel, H., J. Morales, C. Caballero, L. Alva, G. McIntosh, S. González, and G. Sherwood, Variation of Rock Magnetic Parameters and Paleoin-tensities over a Single Holocene Lava Flow, J. Geomag. Geoelectr., 49, 523–542, 1997.

  5. Bőhnel, H., A. J. Biggin, D. Walton, J. Shaw, and J. A. Share, Microwave paleointensities from a recent Mexican lava flow, baked sediments and reheated pottery, Earth Planet. Sci. Lett., 214, 221–236, 2003.

  6. Bowles, J., J. Gee, J. Hildebrand, and L. Tauxe, Archeomagnetic intensity results from Californiaand Ecuador: evaluation of regional data, Earth Planet. Sci. Lett., 203, 967–981, 2002.

  7. Bryant, D. D., J. E. Clark, and D. Cheetham, Ceramic Sequence of the Upper Grijalva Region, Chiapas, México, New World Archeological Foundation, Provo, Utah, No. 67, 2005.

  8. Bucha, V., R. E. Tylor, R. Berger, and E. W. Haury, Geomagnetic intensity: Changes during the past 3000 years in the western hemisphere, Science, 168, 111–114, 1970.

  9. Chauvin, A., A. Garcia, Ph. Lanos, and F. Laubenheimer, Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France, Phys. Earth Planet. Inter., 120, 111–136, 2000.

  10. Clark, J. and D. Cheetham, La cerámica del Formativo en Chiapas, in: B. Carrion y A. García, La Producción Alfarera en el México Antiguo Vol. I, Colección Científica INAH, México, 285–243, 2005.

  11. Coe, R. S., Paleo-Intensities of the Earth’s Magnetic Field Determined from Tertiary and Quaternary Rocks, J. Geophys. Res., 72(12), 3247–3262, 1967.

  12. Coe, R., S. Grommé and E. A. Mankinen, Geomagnetic paleointensity from radiocarbon-dated flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

  13. Culbert, P. T., The ceramic history of the Highlands of Chiapas, Papers of the New World Archeological Foundation, Provo, Utah, No. 19, 1965.

  14. Dixon, K. A., Ceramic from two preclassic periods at Chiapa de Corzo, Chiapas, Mexico, Papers of the New World Archeological Foundation, Orinda, Ca, No. 5, 1959.

  15. Dunlop, D. and O. Özdemir, Rock-Magnetism, fundamentals and frontiers, Cambrige University Press, 573pp, 1997.

  16. Genevey, A. and Y. Gallet, Intensity of the geomagnetic field in western Europe over the past 2000 years: New data from ancient French pottery, J. Geophys. Res., 107(B11), 2285, doi:10.1029/2001JB000701, 2002.

  17. Gonzalez, S., G. Sherwood, H. Böhnel, and E. Schnepp, Paleosecular variation in Central Mexico over the last 30 000 years: the record from lavas, Geophys. J. Int., 130, 201–219, 1997.

  18. Korte, M. and C. G. Constable, Continuous geomagnetic field models for the past 7 millenia: 2. CALS7K, Geochem. Geophys. Geosyst., 6, Q02H16, doi:10.1029/2004GC000801, 2005.

  19. Korte, M., A. Genevey, C. G. Constable, U. Frank, and E. Schnepp, Continuous geomagnetic field models for the past 7 millenia: 1. A new global data compilation, Geochem. Geophys. Geosyst., 6, Q02H15, doi:10.1029/2004GC000800, 2005.

  20. Lee, S. S., Secular variation of the intensity of the geomagnetic field during the past 3,000 years in North, Central and South America, Ph.D. thesis, University of Oklahoma, Norman, 1975.

  21. Lee, T., Mound 4 Excavations at San Isidro, Chiapas, Mexico, Papers of the New World Archeological Foundation, Provo, Utah, No. 34, 1974.

  22. McCabe, C, M. Jackson, and B. Ellwood, Magnetic anisotropy in the Trenton limestone: results of a new technique, anisotropy of anhysteric susceptibility, Geophys. Res. Lett., 12, 333–336, 1985.

  23. McElhinny, M. W. and W. E. Senanayake, Variations in the geomagnetic dipole 1: the past 50,000 years, J. Geomag. Geoelectr., 34, 39–51, 1982.

  24. Morales, J., A. Goguitchaichvili, and J. Urrutia-Fucugauchi, A rock-magnetic and paleointensity study of some Mexican volcanic lava flows during the Latest Pleistocene to the Holocene, Earth Planets Space, 53(9), 893–902, 2001.

  25. Morales, J., L. M. Alva-Valdivia, A. Goguitchaichvili, and J. Urrutia-Fucugauchi, Cooling rate corrected paleointensities from the Xitle lava flow: Evaluation of within-site scatter for single spot-reading cooling units, Earth Planets Space, 58(10), 1341–1347, 2006.

  26. Nagata, T., K. Kobayashi, and E. J. Schwarz, Archeomagnetic intensity studies of South and Central America, J. Geomag. Geoelectr., 17, 399–405, 1965.

  27. Schumann, E. A., A recent visit to southern, Mexico. Maya Res., 3(3–4), 296–305, 1936.

  28. Selkin, P. A., J. S. Gee, L. Tauxe, W. P. Meurer, and A. J. Newell, The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex, Earth Planet. Sci. Lett., 183, 403–416, 2000.

  29. Shook, E. M., An archeological reconnaissance in Chiapas, Mexico, Papers of the New World Archeological Foundation, Orinda, Ca, No. 1, 1956.

  30. Tauxe, L., T. A. T. Mullender, and T. Pick, Pot-bellies, wasp-waists and su-perparamagnetism in magnetic hysteresis, J. Geophys. Res., 95, 12337–12350, 1996.

  31. Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

  32. Weiant, C. W, An introduction to the ceramic of Tres Zapotes, Bulletin 139, Bureau of American Ethnology, Washington, 1943.

  33. Yang, S., H. Odah, and J. Shaw, Variations in the geomagnetic dipole moment over the last 12 000 years, Geophys. J. Int., 140, 158–162, 2000.

  34. Zananiri, I., C. M. Batt, Ph. Lanos, D. H. Tarling, and P. Linford., Archaeo-magnetic secular variation in the UK during the last 4000 years and its application to archaeomagnetic dating, Phys. Earth Planet. Inter., 160, 97–107, 2007.

Download references

Author information



Corresponding author

Correspondence to Juan Morales.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morales, J., Goguitchaichvili, A., Acosta, G. et al. Magnetic properties and archeointensity determination on Pre-Columbian pottery from Chiapas, Mesoamerica. Earth Planet Sp 61, 83–91 (2009).

Download citation

Key words

  • Archeointensity
  • Mesoamerica
  • Pre-Columbian pottery
  • thermoremament magnetization
  • Chiapas