Skip to main content

First archeointensity results from Portuguese potteries (1550-1750 AD)

Abstract

Geomagnetic field variations at archeomagnetic timescales can be obtained from well-dated heated structures and archeological potsherds. Here, we present the first archeointensity results obtained on Portuguese ceramics (1550 to 1750 AD) collected at Brazilian archeological sites. The results are compared to those obtained from Western Europe and currently available geomagnetic field models. Continuous thermomagnetic and IRM acquisitions curves indicate that Ti-poor titanomagnetite is responsible for the remanence in these ceramic fragments. Five fragments (24 samples) out of twelve analyzed yielded reliable intensity estimates. The row archeointensity data were corrected for TRM anisotropy and cooling rate effect. The mean dipole moments are obtained for three different age intervals: 1550±30 AD, 1600±30 AD and 1750±50 AD. Mean intensities vary from 37.9±4.2 μT to 54.8±7.6 μT in agreement with the previously reported data for 1550 AD and 1750 AD. Relatively weaker, but still highly dispersed, values were obtained for 1600 AD ceramics.

References

  1. Aitken, M. J., A. L. Allsop, G. D. Bussell, and M. B. Winter, Determination of the intensity of the Earth’s magnetic field during archaeological times: Reability of the Thellier technique, Rev. Geophys., 26, 3–12, 1988.

    Article  Google Scholar 

  2. Bowles, J., J. Gee, J. Hildebrand, and L. Tauxe, Archaeomagnetic intensity results from California and Ecuador: evaluation of regional data, Phys. Earth Planet. Inter., 203(3-4), 967–981, 2002.

    Article  Google Scholar 

  3. Chauvin, A., Y. Garcia, Ph. Lanos, and F. Laubenheimer, Paleointensity geomagnetic field recovered on archaeomagnetic sites from France, Phys. Earth Planet. Inter., 120, 111–136, 2000.

    Article  Google Scholar 

  4. Coe, R. S., The determination of paleo-intensities of the Earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behavior in Thelier’s method, J. Geomag. Geoelectr., 19, 157–179, 1967.

    Article  Google Scholar 

  5. Coe, R. S., C. S. Gromm, and E. A. Mankinen, Geomagnetic paleointen-sities from radiocarbon dated lava flows on Hawaii and the question of the Pacific non-dipole low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  6. Etchevarne, C., A reciclagem da faiança em Salvador: contextos ar-queol’ogicos e tipos de utilização, Clio, 16, 2003.

  7. Etchevarne, C., Aspectos da cerâmica colonial do século XVII, em Salvador, Bahia, Clio, 20, 2006.

  8. Etchevarne, C., A faiança portuguesa do século XVII na Bahia. Patrimônio e Estudos, IPPAR, 10, 2007.

  9. Fox, J. M. W. and M. J. Aitken, Cooling-rate dependence of thermorema-nent magnetization, Nature, 283, 462–463, 1980.

    Article  Google Scholar 

  10. Gallet, Y., A. Genevey, and M. LeGoff, Three millennia of direction variation of the Earth’s magnetic field in Western Europe as revealed by archeological artefacts, Phys. Earth Planet. Inter., 131, 81–89, 2002.

    Article  Google Scholar 

  11. Gallet, Y., A. Genevey, and F. Fluteau, Does Earth’s magnetic field secular variation control centennial climate change?, Earth Planet. Sci. Lett., 236, 339–347, 2005.

    Article  Google Scholar 

  12. Genevey, A. and Y. Gallet, Intensity of the geomagnetic field in western Europe over the past 2000 years: New data from ancient French pottery, J. Geophys. Res., 107(B11), 2285, 2002.

    Article  Google Scholar 

  13. Genevey, A. S., Y. Gallet, and J. C. Margueron, Eight thousand years of geomagnetic field intensity variations in the eastern Mediterranean, J. Geophys. Res., 108(B5), 2228, 2003.

    Article  Google Scholar 

  14. G’omez-Paccard, M., A. Chauvin, Ph. Lanos, J. Thiriot, and P. Jiménez-Castillo, Archeomagnetic study of seven contemporaneous kilns from Murcia (Spain), Phys. Earth Planet. Inter., 157, 16–32, 2006.

    Article  Google Scholar 

  15. Gubbins, D., A. L. Jones, and C. C. Finlay, Fall in Earth’s Magnetic Field is Erratic, Science, 312, 900–902, 2006.

    Article  Google Scholar 

  16. Jackson, A., A. R. T. Jonkers, and M. Walker, Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. London A, 358, 957–990, 2000.

    Article  Google Scholar 

  17. Korte, M. and C. G. Constable, Continuous geomagnetic field for the past 7 millennia: 2.CALS7K, Geochem. Geophys. Geosyst., 6, 1, 2005.

    Google Scholar 

  18. Korte, M., A. Genevey, C. G. Constable, U. Frank, and E. Schnepp, Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation, Geochem. Geophys. Geosyst., 6, Q02H15, 2005.

    Google Scholar 

  19. Kovacheva, M., Archeomagnetic database from Bulgaria: the last 8000 years, Phys. Earth Planet. Inter., 102, 145–151, 1997.

    Article  Google Scholar 

  20. Kovacheva, M., J. M. Parés, N. Jordanova, and V. Karloukovski, A new contribution to the archaeomagnetic study of a Roman pottery kiln from Calahorra (Spain), Geophys. J. Int., 123, 931–936, 1995.

    Article  Google Scholar 

  21. McIntosh, G., M. Kovacheva, G. Catanzariti, M. L. Osete, and L. Casas, Widespread occurrence of a novel high coercivity, thermally stable, low unblocking temperature magnetic phase in heated archeological material, Geophys. Res. Lett., 34, L21302, 2007.

    Article  Google Scholar 

  22. Morales, J., A. Goguitchaichvili, and J. Urrutia-Fucugauchi, A rock-magnetic and paleointensity study of some Mexican volcanic lava flows during the Latest Pleistocene to the Holocene, Earth Planets Space, 53, 893–902, 2001.

    Article  Google Scholar 

  23. Morales, J., L. M. Alva-Valdivia, A. Goguitchaichvili, and J. Urrutia-Fucugauchi, Cooling rate corrected paleointensities from the Xitle lava flow: Evaluation of within-site scatter for single spot-reading cooling units, Earth Planets Space, 58, 1341–1347, 2006.

    Article  Google Scholar 

  24. Néel, L., Some theoretical aspects of rock magnetism, Adv. Phys., 4, 191–243, 1955.

    Article  Google Scholar 

  25. Perrin, M. and E. Schnepp, IAGA paleointensity database: distribution and quality of the data set, Phys. Earth Planet. Inter., 147, 255–267, 2004.

    Article  Google Scholar 

  26. Soler-Arechalde, A. M., F. Sanchez, M. Rodriguez, C. Caballero-Miranda, A. Goguitchaichvili, J. Urrutia-Fucugauchi, L. Manzanilla, and D. H. Tarling, Archaeomagnetic investigation of oriented pre-Columbian lime-plasters from Teotihuacan, Mesoamerica, Earth Planets Space, 58, 1433–1439, 2006.

    Article  Google Scholar 

  27. Thellier, E. and O. Thellier, Sur l’intensité du champ magnetiqué terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

    Google Scholar 

  28. Valet, J.-P., Time Variations in Geomagnetic Intensity, Rev. Geophys., 41, 1, 2003.

    Article  Google Scholar 

  29. Yu, Y., D. J. Dunlop, L. Pavlish, and M. Cooper, Archeomagnetism of Ontario potsherds from the last 2000 years, J. Geophys. Res., 105(B8), 19419–19434, 2000.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gelvam A. Hartmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hartmann, G.A., Trindade, R.I.F., Goguitchaichvili, A. et al. First archeointensity results from Portuguese potteries (1550-1750 AD). Earth Planet Sp 61, 93–100 (2009). https://doi.org/10.1186/BF03352888

Download citation

Key words

  • Archeointensity
  • secular variation
  • cooling rate correction
  • Portuguese pottery