Skip to main content

Advertisement

Controlled atmosphere vibrating thermo-magnetometer (CatVTM): a new device to optimize the absolute paleointensity determinations

Article metrics

Abstract

The laboratory of paleomagnetism of Montpellier (France) has developed a new one-axis vibrating thermal magnetometer dedicated to the study of physical properties of natural rocks remanence. Among its key characteristics, this apparatus allows both measurement of the magnetization moment on the interval from room temperature to 700°C with a precision of 2 × 10-9 A m2 and acquisition of a total or a partial thermo-remanent magnetization using a steady field from -100 up to 100 μT. Another point that is worth noting is that one can apply a controlled atmosphere by means of argon flux to prevent oxidation of the studied sample during heating. We report here a technical description of this new instrument and review some specific applications in absolute paleointensity surveys.

References

  1. Biggin, A. B. and T. Poidras, First-order symmetry of weak-field partial thermoremanence in multi-domain ferromagnetic grains 1. experimental evidence and physical implications, Earth Planet. Sci. Lett., 245, 438–453, 2006.

  2. Biggin, A. B. and M. Perrin, The behaviour and detection of partial ther-moremanent magnetisation (PTRM) tails in Thellier palaeointensity experiments, Earth Planets Space, 59, 717–725, 2007.

  3. Bol’shakov, A. S. and V. V. Shcherbakova, A thermomagnetic criterion for determining the domain structure of ferrimagnetics, Izv. Acad. Sci. USSR Phys. Solid Earth, 15, 111–117, 1979.

  4. Camps, P., G. Ruffet, V. P. Shcherbakova, V. V. Shcherbakov, M. Prévot, A. Moussine-Pouchkine, L. Sholpo, A. Goguitchaivili, and B. Asanidzé, Paleomagnetic and geochronological study of a geomagnetic field reversal or excursion recorded in pliocene volcanic rocks from Georgia (Lesser Caucasus), Phys. Earth Planet. Inter., 96, 41–59, 1996.

  5. Camps, P., B. S. Singer, C. Carvallo, A. Goguitchaichvili, and B. Allen, Matuayma-Brunhes reversal on Tjornes Peninsula (northern Iceland) revisited, EOS, AGU Join Meeting, Acapulco, MX, 2008.

  6. Carvallo, C., P. Camps, G. Ruffet, B. Henry, and T. Poidras, Mono Lake or Laschamp geomagnetic event recorded from lava flows in Amsterdam Island (southeastern Indian Ocean), Geophys. J. Int., 154, 767–782, 2003.

  7. Draeger, U., M. Prévot, T. Poidras, and J. Riisager, Single-domain chemical, thermochemical and thermal remanences in a basaltic rock, Geo-phys. J. Int., 166, 12–32, 2006.

  8. Durand, E., Magnétostatique, chapter 3, 141, Masson et Cie, 1968.

  9. Kristjansson, L., H. Johannesson, J. Eiriksson, and A. I. Gudmundsson, Brunhes-matuyama paleomagnetism in three lava sections in iceland, Can. J. Earth Sci., 25(2), 215–225, 1988.

  10. Le Goff, M. and Y. Gallet, A new three-axis vibrating magnetometer for continuous high-temperature magnetization measurements, Earth Planet. Sci. Lett., 229, 31–43, 2004.

  11. Paperno, E. and A. Plotkin, Cylindrical induction coil to accurately imitate the ideal magnetic dipole, Sensors Actuators, 112(A), 248–252, 2004.

  12. Perrin, M., Paleointensity determination, magnetic domain structure and selection criteria, J. Geophys. Res., 103(B12), 30,591–30,600, 1998.

  13. Perrin, M. and E. Schnepp, IAGA paleointensity database: distribution and quality of the data set, Phys. Earth Planet. Inter., 147, 255–267, doi:10.1016/j.pepi.2004.06.005, 2004.

  14. Plenier, G., P. Camps, R. S. Coe, and M. Perrin, Absolute palaeointensity of Oligocene (24-30 Ma) lava flows from the Kerguelen Archipelago (southern Indian Ocean), Geophys. J. Int., 154, 877–890, 2003.

  15. Shcherbakov, V. P., V. V. Shcherbakova, Y. K. Vinogradov, and F. Heider, Thermal stability of pTRMs created from different magnetic states, Phys. Earth Planet. Inter., 126, 59–73, 2001.

  16. Shcherbakova, V. V., V. P. Shcherbakov, and F. Heider, Properties of partial thermoremanent magnetization in pseudosingle domain and multidomain magnetite grains, J. Geophys. Res., 105, 77,767–77,781, 2000.

  17. Thellier, E., Sur l’aimantation des terres cuites et ses applications géophysiques, Ann. Inst. Physique du Globe, Univ. Paris, 16, 157–302, 1938.

  18. Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

  19. Valet, J.-P., Encyclopedia of Geomagnetism and Paleomagnetism, chapter Paleointensity, Absolute techniques, 753–757, Encyclopedia of Earth Sciences, Springer, 2007.

  20. Vinogradov, Y. K. and G. P. Markov, Investigations in rock magnetism and palaeomagnetism, chapter On the effect of low temperature heating on the magnetic state of multidomain magnetite, 31–39, Inst. of Phys. of the Earth, Moscow, 1989 (in Russian).

  21. Wack, M. and J. Matzka, A new type of a three-component spinner magnetometer to measure the remanence of rocks at elevated temperature, Earth Planets Space, 59, 853–862, 2007.

Download references

Author information

Correspondence to Pierre Camps.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Poidras, T., Camps, P. & Nicol, P. Controlled atmosphere vibrating thermo-magnetometer (CatVTM): a new device to optimize the absolute paleointensity determinations. Earth Planet Sp 61, 101–110 (2009) doi:10.1186/BF03352889

Download citation

Key words

  • Inductometer
  • absolute paleointensity
  • CatVTM
  • pTRM-tail