Skip to main content

Volume 61 Supplement 1

Special Issue: Magnetism of Volcanic Materials-Tribute to Works of Michel Prévot

Thermal fluctuation fields in basalts

Abstract

The thermal fluctuation field (Hf) is central to thermoremanent acquisition models, which are key to our understanding of the reliability of palaeomagnetic data, however, Hf is poorly quantified for natural systems. We report Hf determinations for a range of basalts, made by measuring rate-dependent hysteresis. The results for the basalts were found to be generally consistent within the space of Hf versus the coercive force HC, i.e., the “Barbier plot”, which is characterized by the empirically derived relationship; log Hf 1.3 log HC obtained from measurements on a wide range of different magnetic materials. Although the basalts appear to occupy the correct position within the space of the Barbier plot, the relationship within the sample set, log Hf 0.54 log HC, is different to the Barbier relationship. This difference is attributed to the original Barbier relationship being derived from a wide range of different synthetic magnetic materials, and not for variations within one material type, as well as differences in methodology in determining Hf. We consider the relationship between HC and the activation volume, υact, which was found to be HC υ ***** for our mineralogically homogeneous samples. This compares favourably with theoretical predictions, and with previous empirical estimates based on the Barbier plot, which defined the relationship as HC ****.

References

  • Barbier, J. C., Le trâinage irréversible dans les champs faibles, J. Phys. Rad., 12, 352–354, 1951.

    Article  Google Scholar 

  • Barbier, J. C., Le trâinage magnétique de fluctuation, Ann. Phys., 9, 84–140, 1954.

    Google Scholar 

  • Basso, V., C. Beatrice, M. LoBue, P. Tiberto, and G. Bertotti, Connection between hysteresis and thermal relaxation in magnetic materials, Phys. Rev. B, 61, 1278–1285, 2000.

    Article  Google Scholar 

  • Bina, M.-M. and M. Prévot, Thermally activated magnetic viscosity in natural multidomain titanomagnetite, Geophys. J. Int., 117, 495–510, 1994.

    Article  Google Scholar 

  • Bottoni, G., Critical volume for the switching of the magnetization in recording media, J. Magn. Magn. Mater., 272-276, 2269–2270, 2005.

    Article  Google Scholar 

  • Bruno, P., G. Bayreuther, P. Beauvillain, C. Chappert, G. Lugert, D. Renard, J. P. Renard, and J. Seiden, Hysteresis properties of ultrathin ferromagnetic films, J. Appl. Phys., 68, 5759–5766, 1990.

    Article  Google Scholar 

  • Day, R., M. D. Fuller, and V. A. Schmidt, Hysteresis properties of ti-tanomagnetites: grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.

    Article  Google Scholar 

  • Dunlop, D. J., Thermal fluctuation analysis: a new technique in rock magnetism, J. Geophys. Res., 81, 3511–3517, 1976.

    Article  Google Scholar 

  • Dunlop, D. J. and M.-M. Bina, The coercive force spectrum of magnetite at high temperatures: evidence for thermal activation below the blocking temperature, Geophys. J. R. Astr. Soc., 51, 121–147, 1977.

    Article  Google Scholar 

  • Efron, B. and R. J. Tibshirani, An Introduction to the Bootstrap, 456 pp., Chapman and Hall, New York, 1993.

    Book  Google Scholar 

  • El-Hilo, M. and I. Bsoul, Interaction effects on the coercivity and fluctuation field in granular powder magnetic systems, Physica B, 389, 311–326, 2007.

    Article  Google Scholar 

  • El-Hilo, M., K. O’Grady, and R. W. Chantrell, Fluctuation fields and reversal mechanisms in granular magnetic systems, J. Magn. Magn. Mater., 248, 360–373, 2002.

    Article  Google Scholar 

  • Gaunt, P., Magnetic viscosity and thermal activation energy, J. Appl. Phys., 59, 4129–4132, 1986.

    Article  Google Scholar 

  • Haggerty, S. E., Oxide Textures—A mini-altas, in Reviews in Mineralogy Volume 25—Oxide Minerals, in Petrologic and magnetic significance, edited by D. H. Lindsley, pp. 129–137, Mineralogical Society of America, Washington D.C., 1991.

    Google Scholar 

  • Hilzinger, H. R. and H. Kronmüller, Statistical theory of the pinning of Bloch walls by randomly distributed defects, J. Magn. Magn. Mater., 2, 11–17, 1975.

    Article  Google Scholar 

  • Hunt, C. P., B. M. Moskowitz, and S. K. Banerjee, Magnetic properties of rocks and minerals, in A Handbook of Physical Constants, vol. 3, edited by T. J. Ahrens, pp. 189–204, American Geophysical Union, Washington, DC, 1995.

    Google Scholar 

  • Klik, I. and C.-R. Chang, A discussion of the Barbier plot, J. Magn. Magn. Mater., 114, L235–L236, 1992.

    Article  Google Scholar 

  • Krása, D. and J. Matzka, Inversion of titanomaghemite in oceanic basalt during heating, Phys. Earth Planet. Inter., 160, 169–179, 2007.

    Article  Google Scholar 

  • Liu, J. F. and H. L. Luo, On the relationship between coercive force HC and magnetic viscosity parameter Sv in magnetic materials, J. Magn. Magn. Mater., 86, 153–158, 1990.

    Article  Google Scholar 

  • Liu, J. F. and H. L. Luo, On the coercive force and effective activation volume in magnetic materials, J. Magn. Magn. Mater., 94, 43–48, 1991.

    Article  Google Scholar 

  • Mankos, M., M. R. Scheinfein, and J. M. Cowley, Quantitative micromag-netics: electron holography of magnetic thin films and multilayers, IEEE Trans. Magn., 32, 4150–4155, 1996.

    Article  Google Scholar 

  • Néel, L., Théorie du trâinage magnétique des substances massives dans le domaine de Rayleigh, J. Phys. Rad., 11, 49–61, 1950.

    Article  Google Scholar 

  • Néel, L., Le trâinage magnétique, J. Phys. Rad., 12, 339–351, 1951.

    Article  Google Scholar 

  • Prévot, M., Some aspects of magnetic viscosity in subaerial and submarine volcanic rocks, Geophys. J. R. Astr. Soc., 66, 169–192, 1981.

    Article  Google Scholar 

  • Shimizu, Y., Magnetic viscosity of magnetite, J. Geomag. Geoelectr., 11, 125–138, 1960.

    Article  Google Scholar 

  • Sholpo, L. Y., Regularities and methods of study of the magnetic viscosity of rocks, Izv., Phys. Solid Earth, 6, 390–399, 1967.

    Google Scholar 

  • Sholpo, L. Y., V. I. Belokon’, and G. P. Sholpo, Thermally activated nature of the magnetic viscosity of rocks, Izv., Phys. Solid Earth, 1, 42–46, 1972.

    Google Scholar 

  • Street, R. and J. C. Woolley, A study of magnetic viscosity, Proc. Phys. Soc. London (A), 62, 562–572, 1949.

    Article  Google Scholar 

  • Street, R. and J. C. Woolley, Time decrease of magnetic permeability in Alnico, Proc. Phys. Soc. London (B), 63, 509–519, 1950.

    Article  Google Scholar 

  • Street, R. and J. C. Woolley, A comparison of magnetic viscosity in isotropic and anisotropic high coercivity alloys, Proc. Phys. Soc. London (B), 69, 1189–1199, 1956.

    Article  Google Scholar 

  • Street, R., J. C. Woolley, and P. B. Smith, Magnetic viscosity under discontinuously and continuously variable field conditions, Proc. Phys. Soc. London (B), 65, 679–696, 1952.

    Article  Google Scholar 

  • Sun, K., J.-F. Liu, and H.-L. Luo, Magnetic viscosity of magnetic recording media, J. Phys. D: App. Phys., 23, 439–442, 1990.

    Article  Google Scholar 

  • te Lintelo, J. G. T. and J. C. Lodder, On the relationship between magnetic viscosity and coercivity of perpendicular media, J. Appl. Phys., 76, 1741–1744, 1994.

    Article  Google Scholar 

  • Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Géophys., 15, 285–376, 1959.

    Google Scholar 

  • Williams, W. and D. J. Dunlop, Three-dimensional micromagnetic modelling of ferromagnetic domain structure, Nature, 337, 634–637, 1989.

    Article  Google Scholar 

  • Wohlfarth, E. P., Thermal Fluctuation Effects in Thin Magnetic Films, J. Elect. Con., 10, 33–37, 1961.

    Article  Google Scholar 

  • Wohlfarth, E. P., The coefficient of magnetic viscosity, J. Phys. F: Met. Phys., 14, L155–L159, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian R. Muxworthy.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Muxworthy, A.R., Heslop, D. & Michalk, D.M. Thermal fluctuation fields in basalts. Earth Planet Sp 61, 111–117 (2009). https://doi.org/10.1186/BF03352890

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352890

Key words

  • Basalt
  • thermoremanence
  • thermal fluctuations
  • rock magnetism