Skip to main content

Thermal fluctuation fields in basalts

Abstract

The thermal fluctuation field (Hf) is central to thermoremanent acquisition models, which are key to our understanding of the reliability of palaeomagnetic data, however, Hf is poorly quantified for natural systems. We report Hf determinations for a range of basalts, made by measuring rate-dependent hysteresis. The results for the basalts were found to be generally consistent within the space of Hf versus the coercive force HC, i.e., the “Barbier plot”, which is characterized by the empirically derived relationship; log Hf 1.3 log HC obtained from measurements on a wide range of different magnetic materials. Although the basalts appear to occupy the correct position within the space of the Barbier plot, the relationship within the sample set, log Hf 0.54 log HC, is different to the Barbier relationship. This difference is attributed to the original Barbier relationship being derived from a wide range of different synthetic magnetic materials, and not for variations within one material type, as well as differences in methodology in determining Hf. We consider the relationship between HC and the activation volume, υact, which was found to be HC υ ***** for our mineralogically homogeneous samples. This compares favourably with theoretical predictions, and with previous empirical estimates based on the Barbier plot, which defined the relationship as HC ****.

References

  1. Barbier, J. C., Le trâinage irréversible dans les champs faibles, J. Phys. Rad., 12, 352–354, 1951.

    Article  Google Scholar 

  2. Barbier, J. C., Le trâinage magnétique de fluctuation, Ann. Phys., 9, 84–140, 1954.

    Google Scholar 

  3. Basso, V., C. Beatrice, M. LoBue, P. Tiberto, and G. Bertotti, Connection between hysteresis and thermal relaxation in magnetic materials, Phys. Rev. B, 61, 1278–1285, 2000.

    Article  Google Scholar 

  4. Bina, M.-M. and M. Prévot, Thermally activated magnetic viscosity in natural multidomain titanomagnetite, Geophys. J. Int., 117, 495–510, 1994.

    Article  Google Scholar 

  5. Bottoni, G., Critical volume for the switching of the magnetization in recording media, J. Magn. Magn. Mater., 272-276, 2269–2270, 2005.

    Article  Google Scholar 

  6. Bruno, P., G. Bayreuther, P. Beauvillain, C. Chappert, G. Lugert, D. Renard, J. P. Renard, and J. Seiden, Hysteresis properties of ultrathin ferromagnetic films, J. Appl. Phys., 68, 5759–5766, 1990.

    Article  Google Scholar 

  7. Day, R., M. D. Fuller, and V. A. Schmidt, Hysteresis properties of ti-tanomagnetites: grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.

    Article  Google Scholar 

  8. Dunlop, D. J., Thermal fluctuation analysis: a new technique in rock magnetism, J. Geophys. Res., 81, 3511–3517, 1976.

    Article  Google Scholar 

  9. Dunlop, D. J. and M.-M. Bina, The coercive force spectrum of magnetite at high temperatures: evidence for thermal activation below the blocking temperature, Geophys. J. R. Astr. Soc., 51, 121–147, 1977.

    Article  Google Scholar 

  10. Efron, B. and R. J. Tibshirani, An Introduction to the Bootstrap, 456 pp., Chapman and Hall, New York, 1993.

    Google Scholar 

  11. El-Hilo, M. and I. Bsoul, Interaction effects on the coercivity and fluctuation field in granular powder magnetic systems, Physica B, 389, 311–326, 2007.

    Article  Google Scholar 

  12. El-Hilo, M., K. O’Grady, and R. W. Chantrell, Fluctuation fields and reversal mechanisms in granular magnetic systems, J. Magn. Magn. Mater., 248, 360–373, 2002.

    Article  Google Scholar 

  13. Gaunt, P., Magnetic viscosity and thermal activation energy, J. Appl. Phys., 59, 4129–4132, 1986.

    Article  Google Scholar 

  14. Haggerty, S. E., Oxide Textures—A mini-altas, in Reviews in Mineralogy Volume 25—Oxide Minerals, in Petrologic and magnetic significance, edited by D. H. Lindsley, pp. 129–137, Mineralogical Society of America, Washington D.C., 1991.

    Google Scholar 

  15. Hilzinger, H. R. and H. Kronmüller, Statistical theory of the pinning of Bloch walls by randomly distributed defects, J. Magn. Magn. Mater., 2, 11–17, 1975.

    Article  Google Scholar 

  16. Hunt, C. P., B. M. Moskowitz, and S. K. Banerjee, Magnetic properties of rocks and minerals, in A Handbook of Physical Constants, vol. 3, edited by T. J. Ahrens, pp. 189–204, American Geophysical Union, Washington, DC, 1995.

    Google Scholar 

  17. Klik, I. and C.-R. Chang, A discussion of the Barbier plot, J. Magn. Magn. Mater., 114, L235–L236, 1992.

    Article  Google Scholar 

  18. Krása, D. and J. Matzka, Inversion of titanomaghemite in oceanic basalt during heating, Phys. Earth Planet. Inter., 160, 169–179, 2007.

    Article  Google Scholar 

  19. Liu, J. F. and H. L. Luo, On the relationship between coercive force HC and magnetic viscosity parameter Sv in magnetic materials, J. Magn. Magn. Mater., 86, 153–158, 1990.

    Article  Google Scholar 

  20. Liu, J. F. and H. L. Luo, On the coercive force and effective activation volume in magnetic materials, J. Magn. Magn. Mater., 94, 43–48, 1991.

    Article  Google Scholar 

  21. Mankos, M., M. R. Scheinfein, and J. M. Cowley, Quantitative micromag-netics: electron holography of magnetic thin films and multilayers, IEEE Trans. Magn., 32, 4150–4155, 1996.

    Article  Google Scholar 

  22. Néel, L., Théorie du trâinage magnétique des substances massives dans le domaine de Rayleigh, J. Phys. Rad., 11, 49–61, 1950.

    Article  Google Scholar 

  23. Néel, L., Le trâinage magnétique, J. Phys. Rad., 12, 339–351, 1951.

    Article  Google Scholar 

  24. Prévot, M., Some aspects of magnetic viscosity in subaerial and submarine volcanic rocks, Geophys. J. R. Astr. Soc., 66, 169–192, 1981.

    Article  Google Scholar 

  25. Shimizu, Y., Magnetic viscosity of magnetite, J. Geomag. Geoelectr., 11, 125–138, 1960.

    Article  Google Scholar 

  26. Sholpo, L. Y., Regularities and methods of study of the magnetic viscosity of rocks, Izv., Phys. Solid Earth, 6, 390–399, 1967.

    Google Scholar 

  27. Sholpo, L. Y., V. I. Belokon’, and G. P. Sholpo, Thermally activated nature of the magnetic viscosity of rocks, Izv., Phys. Solid Earth, 1, 42–46, 1972.

    Google Scholar 

  28. Street, R. and J. C. Woolley, A study of magnetic viscosity, Proc. Phys. Soc. London (A), 62, 562–572, 1949.

    Article  Google Scholar 

  29. Street, R. and J. C. Woolley, Time decrease of magnetic permeability in Alnico, Proc. Phys. Soc. London (B), 63, 509–519, 1950.

    Article  Google Scholar 

  30. Street, R. and J. C. Woolley, A comparison of magnetic viscosity in isotropic and anisotropic high coercivity alloys, Proc. Phys. Soc. London (B), 69, 1189–1199, 1956.

    Article  Google Scholar 

  31. Street, R., J. C. Woolley, and P. B. Smith, Magnetic viscosity under discontinuously and continuously variable field conditions, Proc. Phys. Soc. London (B), 65, 679–696, 1952.

    Article  Google Scholar 

  32. Sun, K., J.-F. Liu, and H.-L. Luo, Magnetic viscosity of magnetic recording media, J. Phys. D: App. Phys., 23, 439–442, 1990.

    Article  Google Scholar 

  33. te Lintelo, J. G. T. and J. C. Lodder, On the relationship between magnetic viscosity and coercivity of perpendicular media, J. Appl. Phys., 76, 1741–1744, 1994.

    Article  Google Scholar 

  34. Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Géophys., 15, 285–376, 1959.

    Google Scholar 

  35. Williams, W. and D. J. Dunlop, Three-dimensional micromagnetic modelling of ferromagnetic domain structure, Nature, 337, 634–637, 1989.

    Article  Google Scholar 

  36. Wohlfarth, E. P., Thermal Fluctuation Effects in Thin Magnetic Films, J. Elect. Con., 10, 33–37, 1961.

    Article  Google Scholar 

  37. Wohlfarth, E. P., The coefficient of magnetic viscosity, J. Phys. F: Met. Phys., 14, L155–L159, 1984.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adrian R. Muxworthy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muxworthy, A.R., Heslop, D. & Michalk, D.M. Thermal fluctuation fields in basalts. Earth Planet Sp 61, 111–117 (2009). https://doi.org/10.1186/BF03352890

Download citation

Key words

  • Basalt
  • thermoremanence
  • thermal fluctuations
  • rock magnetism