Skip to main content


Thermal fluctuation fields in basalts


The thermal fluctuation field (Hf) is central to thermoremanent acquisition models, which are key to our understanding of the reliability of palaeomagnetic data, however, Hf is poorly quantified for natural systems. We report Hf determinations for a range of basalts, made by measuring rate-dependent hysteresis. The results for the basalts were found to be generally consistent within the space of Hf versus the coercive force HC, i.e., the “Barbier plot”, which is characterized by the empirically derived relationship; log Hf 1.3 log HC obtained from measurements on a wide range of different magnetic materials. Although the basalts appear to occupy the correct position within the space of the Barbier plot, the relationship within the sample set, log Hf 0.54 log HC, is different to the Barbier relationship. This difference is attributed to the original Barbier relationship being derived from a wide range of different synthetic magnetic materials, and not for variations within one material type, as well as differences in methodology in determining Hf. We consider the relationship between HC and the activation volume, υact, which was found to be HC υ ***** for our mineralogically homogeneous samples. This compares favourably with theoretical predictions, and with previous empirical estimates based on the Barbier plot, which defined the relationship as HC ****.


  1. Barbier, J. C., Le trâinage irréversible dans les champs faibles, J. Phys. Rad., 12, 352–354, 1951.

  2. Barbier, J. C., Le trâinage magnétique de fluctuation, Ann. Phys., 9, 84–140, 1954.

  3. Basso, V., C. Beatrice, M. LoBue, P. Tiberto, and G. Bertotti, Connection between hysteresis and thermal relaxation in magnetic materials, Phys. Rev. B, 61, 1278–1285, 2000.

  4. Bina, M.-M. and M. Prévot, Thermally activated magnetic viscosity in natural multidomain titanomagnetite, Geophys. J. Int., 117, 495–510, 1994.

  5. Bottoni, G., Critical volume for the switching of the magnetization in recording media, J. Magn. Magn. Mater., 272-276, 2269–2270, 2005.

  6. Bruno, P., G. Bayreuther, P. Beauvillain, C. Chappert, G. Lugert, D. Renard, J. P. Renard, and J. Seiden, Hysteresis properties of ultrathin ferromagnetic films, J. Appl. Phys., 68, 5759–5766, 1990.

  7. Day, R., M. D. Fuller, and V. A. Schmidt, Hysteresis properties of ti-tanomagnetites: grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.

  8. Dunlop, D. J., Thermal fluctuation analysis: a new technique in rock magnetism, J. Geophys. Res., 81, 3511–3517, 1976.

  9. Dunlop, D. J. and M.-M. Bina, The coercive force spectrum of magnetite at high temperatures: evidence for thermal activation below the blocking temperature, Geophys. J. R. Astr. Soc., 51, 121–147, 1977.

  10. Efron, B. and R. J. Tibshirani, An Introduction to the Bootstrap, 456 pp., Chapman and Hall, New York, 1993.

  11. El-Hilo, M. and I. Bsoul, Interaction effects on the coercivity and fluctuation field in granular powder magnetic systems, Physica B, 389, 311–326, 2007.

  12. El-Hilo, M., K. O’Grady, and R. W. Chantrell, Fluctuation fields and reversal mechanisms in granular magnetic systems, J. Magn. Magn. Mater., 248, 360–373, 2002.

  13. Gaunt, P., Magnetic viscosity and thermal activation energy, J. Appl. Phys., 59, 4129–4132, 1986.

  14. Haggerty, S. E., Oxide Textures—A mini-altas, in Reviews in Mineralogy Volume 25—Oxide Minerals, in Petrologic and magnetic significance, edited by D. H. Lindsley, pp. 129–137, Mineralogical Society of America, Washington D.C., 1991.

  15. Hilzinger, H. R. and H. Kronmüller, Statistical theory of the pinning of Bloch walls by randomly distributed defects, J. Magn. Magn. Mater., 2, 11–17, 1975.

  16. Hunt, C. P., B. M. Moskowitz, and S. K. Banerjee, Magnetic properties of rocks and minerals, in A Handbook of Physical Constants, vol. 3, edited by T. J. Ahrens, pp. 189–204, American Geophysical Union, Washington, DC, 1995.

  17. Klik, I. and C.-R. Chang, A discussion of the Barbier plot, J. Magn. Magn. Mater., 114, L235–L236, 1992.

  18. Krása, D. and J. Matzka, Inversion of titanomaghemite in oceanic basalt during heating, Phys. Earth Planet. Inter., 160, 169–179, 2007.

  19. Liu, J. F. and H. L. Luo, On the relationship between coercive force HC and magnetic viscosity parameter Sv in magnetic materials, J. Magn. Magn. Mater., 86, 153–158, 1990.

  20. Liu, J. F. and H. L. Luo, On the coercive force and effective activation volume in magnetic materials, J. Magn. Magn. Mater., 94, 43–48, 1991.

  21. Mankos, M., M. R. Scheinfein, and J. M. Cowley, Quantitative micromag-netics: electron holography of magnetic thin films and multilayers, IEEE Trans. Magn., 32, 4150–4155, 1996.

  22. Néel, L., Théorie du trâinage magnétique des substances massives dans le domaine de Rayleigh, J. Phys. Rad., 11, 49–61, 1950.

  23. Néel, L., Le trâinage magnétique, J. Phys. Rad., 12, 339–351, 1951.

  24. Prévot, M., Some aspects of magnetic viscosity in subaerial and submarine volcanic rocks, Geophys. J. R. Astr. Soc., 66, 169–192, 1981.

  25. Shimizu, Y., Magnetic viscosity of magnetite, J. Geomag. Geoelectr., 11, 125–138, 1960.

  26. Sholpo, L. Y., Regularities and methods of study of the magnetic viscosity of rocks, Izv., Phys. Solid Earth, 6, 390–399, 1967.

  27. Sholpo, L. Y., V. I. Belokon’, and G. P. Sholpo, Thermally activated nature of the magnetic viscosity of rocks, Izv., Phys. Solid Earth, 1, 42–46, 1972.

  28. Street, R. and J. C. Woolley, A study of magnetic viscosity, Proc. Phys. Soc. London (A), 62, 562–572, 1949.

  29. Street, R. and J. C. Woolley, Time decrease of magnetic permeability in Alnico, Proc. Phys. Soc. London (B), 63, 509–519, 1950.

  30. Street, R. and J. C. Woolley, A comparison of magnetic viscosity in isotropic and anisotropic high coercivity alloys, Proc. Phys. Soc. London (B), 69, 1189–1199, 1956.

  31. Street, R., J. C. Woolley, and P. B. Smith, Magnetic viscosity under discontinuously and continuously variable field conditions, Proc. Phys. Soc. London (B), 65, 679–696, 1952.

  32. Sun, K., J.-F. Liu, and H.-L. Luo, Magnetic viscosity of magnetic recording media, J. Phys. D: App. Phys., 23, 439–442, 1990.

  33. te Lintelo, J. G. T. and J. C. Lodder, On the relationship between magnetic viscosity and coercivity of perpendicular media, J. Appl. Phys., 76, 1741–1744, 1994.

  34. Thellier, E. and O. Thellier, Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Géophys., 15, 285–376, 1959.

  35. Williams, W. and D. J. Dunlop, Three-dimensional micromagnetic modelling of ferromagnetic domain structure, Nature, 337, 634–637, 1989.

  36. Wohlfarth, E. P., Thermal Fluctuation Effects in Thin Magnetic Films, J. Elect. Con., 10, 33–37, 1961.

  37. Wohlfarth, E. P., The coefficient of magnetic viscosity, J. Phys. F: Met. Phys., 14, L155–L159, 1984.

Download references

Author information

Correspondence to Adrian R. Muxworthy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muxworthy, A.R., Heslop, D. & Michalk, D.M. Thermal fluctuation fields in basalts. Earth Planet Sp 61, 111–117 (2009) doi:10.1186/BF03352890

Download citation

Key words

  • Basalt
  • thermoremanence
  • thermal fluctuations
  • rock magnetism