Skip to main content

Advertisement

Grain size dependence of low-temperature remanent magnetization in natural and synthetic magnetite: Experimental study

Article metrics

  • 417 Accesses

  • 14 Citations

Abstract

Magnetic measurements at cryogenic temperatures (<300 K) proved to be useful in paleomagnetic and rock magnetic research, stimulating continuous interest to low-temperature properties of magnetite and other magnetic minerals. Here I report new experimental results on a grain size dependence of the ratio (RLT) between a low-temperature (20 K) saturation isothermal remanent magnetization (SIRM) imparted in magnetite after cooling in a 2.5 T field (field cooling, FC) and in a zero field environment (zero field cooling, ZFC). Synthetic magnetite samples ranged in mean grain size from 0.15 to 100 μm, representing nearly single-domain (SD), pseudosingle-domain (PSD), and multidomain (MD) magnetic states. The RLT ratio monotonically increases from 0.58 to 1.12 with the decreasing mean grain size, being close to unity for PSD grains (0.15-5 μm) and smaller than unity for MD magnetite (12-100 μm). The RLT ratio of 1.27 is observed for acicular magnetite characterized by nearly SD behavior. These observations indicate that within the range of ~0.15 to ~5 μm, the low-temperature SIRM may be higher than that expected from “normal” magnetic domain wall displacement. Such a behavior can be caused by the presence of a SD-like component in the magnetization of these grains, which origin, however, is uncertain. The natural rocks containing nearly stoichiometric magnetite manifest a dependence of the RLT ratio on magnetic domain state identical to that observed from synthetic magnetites. Therefore, the comparison of FC SIRM and ZFC SIRM at very low temperatures may allow a crude estimate of magnetic domain state in some magnetite-bearing rocks, such as shallow mafic intrusions or some marine sediments.

References

  1. Arkani-Hamed, J., On the possibility of single-domain/pseudo-single-domain magnetic particles existing in the lower crust of Mars: Source of the strong magnetic anomalies, J. Geophys. Res., 110, E12009, doi:10.1029/2005JE002535, 2005.

  2. Bickford, L. R., Jr., Ferromagnetic resonance absorption in magnetite single crystals, Phys. Rev., 78, 449–457, 1950.

  3. Brachfeld, S. A., Y. Guyodo, and G. D. Acton, The magnetic mineral assemblage of hemipelagic drifts, ODP Site 1096, in Proc. ODP Sci. Results 178, edited by Barker, P. F., Camerlenghi, A., Acton, G. D., and Ramsay, A. T. S., 1–12, 2001.

  4. Brachfeld, S. A., S. K. Banerjee, Y. Guyodo, and G. D. Acton, A 13200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula, Earth Planet. Sci. Lett., 194, 311–326, 2002.

  5. Calhoun, B. A., Magnetic and electric properties of magnetite at low temperatures, Phys. Rev., 94, 1577–1585, 1954.

  6. Carter-Stiglitz, B., M. Jackson, and B. Moskowitz, Low-temperature re-manence in stable single domain magnetite, Geophys. Res. Lett., 29, doi:10/1029/2001GL014197, 2002.

  7. Carter-Stiglitz, B., B. Moskowitz, P. Solheid, T. S. Berquó, M. Jackson, and A. Kosterov, Low-temperature magnetic behavior of multidomain titanomagnetites: TM0, TM 16, and TM35, J. Geophys. Res., 111, B12S05, doi:10.1029/2006JB004561, 2006.

  8. Chikazumi, S., K. Chiba, K. Suzuki, and T. Yamada, Electron microscopic observation of low temperature phase of magnetite, in Ferrites: Proceedings of the International Conference, edited by Y. Hoshino, S. Iida, and M. Sugimoto, pp. 141–143, University of Tokyo Press, Tokyo, 1971.

  9. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter., 13, 260–267, 1977.

  10. Dunlop, D. J., Superparamagnetic and single-domain threshold sizes in magnetite, J. Geophys. Res., 78, 1780–1793, 1973.

  11. Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107, EPM4, 2002.

  12. Dunlop, D. J. and Ö. Ö zdemir, Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, Cambridge, 1997.

  13. Geiss, C. E., C. W. Zanner, S. K. Banerjee, and M. Joanna, Signature of magnetic enhancement in a loessic soil in Nebraska, United States of America, Earth Planet. Sci. Lett., 228, 355–367, 2004.

  14. Haggerty, S. E., Oxide textures—A mini-atlas, Rev. Mineral., 25, 129–219, 1991.

  15. Halgedahl, S. L. and M. Fuller, The dependence of magnetic domain structure upon magnetization state with emphasis on nucleation as a mechanism for pseudo-single-domain behavior, J. Geophys. Res., 88, 6505–6522, 1983.

  16. Halgedahl, S. L. and R. D. Jarrard, Low-temperature behavior of singledomain through multidomain magnetite, Earth Planet. Sci. Lett., 130, 127–139, 1995.

  17. Kakol, Z., Magnetic and transport properties of magnetite in the vicinity of the Verwey transition, J. Solid Stat. Chem., 88, 104–114, 1990.

  18. King, J. G., W. Williams, C. D. W. Wilkinson, S. McVitie, and J. N. Chapman, Magnetic properties of magnetite arrays produced by the method of electron beam lithography, Geophys. Res. Lett., 23, 2847–2850, 1996.

  19. Kirschvink, J. L. and H. A. Lowenstam, Mineralization and magnetization of chiton teeth: Paleomagnetic, sedimentologic, and biologic implications of organic magnetite, Earth Planet. Sci. Lett., 44, 193–204, 1979.

  20. Kong, X., D. Krása, H. P. Zhou, W. Williams, S. McVitie, J. M. R. Weaver, and C. D. W. Wilkinson, Very high resolution etching of magnetic nanostructures in organic gases, Microelec. Eng, doi:10.1016/ j.mee.2007.12.006, 2008 (in press).

  21. Kopp, R. E., T. D. Raub, D. Schumann, H. Vali, A. V. Smirnov, and J. L. Kirschvink, Magnetofossil spike during the Paleocene-Eocene thermal maximum: Ferromagnetic resonance, rock magnetic, and electron microscopy evidence from Ancora, New Jersey, United States, Paleo-ceanography, 22, doi:10.1029/2007PA001473, 2007.

  22. Kosterov, A. A., Magnetic hysteresis of pseudo-single-domain and multidomain magnetite below the Verwey transition, Earth Planet. Sci. Lett., 186, 245–253, 2001.

  23. Kosterov, A. A., Low-temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history, Geophys. J. Int., 154, 58–71, 2003.

  24. Li, C. H., Magnetic properties of magnetite crystals at low temperature, Phys. Rev., 40, 1002–1012, 1932.

  25. Medrano, C., M. Schlenker, J. Baruchel, J. Espeso, and Y. Miyamoto, Domains in the low-temperature phase of magnetite from synchrotron-radiation x-ray topographs, Phys. Rev. B., 59, 1185–1195, 1999.

  26. Moskowitz, B. M., R. B. Frankel, and D. A. Bazylinski, Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283–300, 1993.

  27. Muxworthy, A. R. and W. Williams, Micromagnetic models of pseudosingle-domain grains of magnetite near the Verwey transition, J. Geophys. Res., 104, 29203–29217, 1999.

  28. Özdemir, Ö. and D. J. Dunlop, Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes, Earth Planet. Sci. Lett., 165, 229–239, 1999.

  29. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671–1674, 1993.

  30. Ö zdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, Changes in remanence, coercivity, and domain state at low temperature in magnetite, Earth Planet. Sci. Lett., 194, 343–358, 2002.

  31. Schmidbauer, E. and R. Keller, Magnetic properties and rotational hysteresis of Fe3O4 and g-Fe2O3 particles ~250 nm in diameter, J. Magn. Magn. Mater., 152, 99–108, 1996.

  32. Smirnov, A. V., Memory of the magnetic field applied during cooling in the low-temperature phase of magnetite: Grain-size dependence, J. Geophys. Res., 111, B12S04, doi10.1029/2006JB004573, 2006.

  33. Smirnov, A. V. and J. A. Tarduno, Magnetic field control of the low-temperature magnetic properties of stoichiometric and cation-deficient magnetite, Earth Planet. Sci. Lett., 194, 359–368, 2002.

  34. Smirnov, A. V. and J. A. Tarduno, Secular variation of the Late Archean- Early Proterozoic geodynamo, Geophys. Res. Lett., 31, L16607, doi:10. 1029/2004GL020333, 2004.

  35. Smirnov, A. V. and J. A. Tarduno, Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak?, J. Geophys. Res., 110, doi:10.1029/2004JB003445, B06103, 2005.

  36. Smirnov, A. V. and D. A. D. Evans, Paleomagnetism of the ~2.4 Ga Widgiemooltha Dike Swarm (Western Australia): Preliminary Results, Eos Trans. AGU, 87(36), Jt. Assem. Suppl., Abstract GP23A-01, 2006.

  37. Sprowl, D. R., Numerical estimation of interactive effects in single-domain magnetite, Geophys. Res. Lett., 17, 2009–2012, 1990.

  38. Stacey, F. D. and S. K. Banerjee, The physical principles of rock magnetism, 195 pp., Elsevier, Amsterdam, 1974.

  39. Syono, Y., Magnetocrystalline anisotropy and magnetostriction of Fe3O4-Fe2TiO4 series—with special application to rock magnetism, Jap. J. Geophys., 4, 71–143, 1965.

  40. Tauxe, L., T. A. T. Mullender, and T. Pick, Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis, J. Geophys. Res., 101, 571–583, 1996.

  41. Verwey, E. J. W., Electron conduction of magnetite (Fe3O4) and its transition point at low temperatures, Nature, 144, 327–328, 1939.

  42. Wang, J., Z. M. Peng, Y. J. Huang, and Q. W. Chen, Growth of magnetite nanorods along its easy-magnetization axis of [110], J. Cryst. Growth, 263, 616–619, 2004.

  43. Williams, H. J., R. M. Bozorth, and M. Goertz, Mechanism of transition in magnetite at low temperatures, Phys. Rev., 91, 1107–1115, 1953.

  44. Zuo, J. M., J. C. H. Spence, and W. Petuskey, Charge ordering in magnetite, Phys. Rev. B, 42, 8451–8464, 1990.

Download references

Author information

Correspondence to Aleksey V. Smirnov.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Magnetite
  • Verwey transition
  • twinning
  • remanent magnetization
  • zero field cooling