Skip to main content

Volume 61 Supplement 1

Special Issue: Magnetism of Volcanic Materials-Tribute to Works of Michel Prévot

Frequency and field dependent susceptibility of magnetite at low temperature

Abstract

We report the temperature dependence of in-phase and quadrature susceptibilities, k′ and k″, between 20 K and 300 K for a stoichiometric natural single crystal of magnetite. Measurements were made for amplitudes of the AC driving field ranging from H = 30 A/m to 2 kA/m and frequencies ranging from f = 40 Hz to 4 kHz. In cubic magnetite above the Verwey transition, TV = 120 K, k′ is limited by self-demagnetization and does not vary greatly with T, H or f. As the crystal cools through TV and transforms to monoclinic structure, k′ decreases by about a factor 2, with a further more gradual decrease of 10-20% in cooling from 40 to 20 K. Saturation remanence also drops sharply at TV but shows no further change in cooling below 40 K. Thus it appears that domain walls remain pinned throughout the 20-40 K range but small segments undergo reversible oscillations in an AC field, the amplitude of oscillation decreasing steadily with cooling below 40 K. In this same range, k″ reaches a peak, while the temperature at which k′ decreases most rapidly changes with frequency. Both observations indicate that domain wall oscillations lag appreciably behind the driving field at very low temperature. Both k′ and k″ increase markedly with increasing AC field amplitude below TV. The field dependence is particularly strong below 40 K. Analysis of the k′(f) data between 20 and 40 K based on an Arrhenius thermal activation equation gives a pre-exponential frequency factor fo ≈ 2.5 × 108 s-1 and an activation energy ΔE = 0.035 eV. The ΔE is appropriate for electron hopping but fo suggests an indirect mechanism for wall mobility related to changes in electron ordering within walls.

References

  • Abe, K., Y. Miyamoto, and S. Chikazumi, Magnetocrystalline anisotropy of low temperature phase of magnetite, J. Phys. Soc. Jpn., 41, 1894–1902, 1976.

    Article  Google Scholar 

  • Balanda, M., A. Wiecheć, D. Kim, Z. Kąkol, A. Kozlowski, P. Niedziela, J. Sabol, Z. Tarnawski, and J. M. Honig, Magnetic AC susceptibility of stoichiometric and low zinc doped magnetite single crystals, Eur. Phys. J., B43, 201–212, 2005.

    Article  Google Scholar 

  • Carter-Stiglitz, B., B. Moskowitz, P. Solheid, T. S. Berquó, M. Jackson, and A. Kosterov, Low-temperature magnetic behavior of multidomain titanomagnetites: TM0, TM16, and TM35, J. Geophys. Res., 111, B12S05, doi:10.1029/2006JB004561, 2006.

  • Clark, D. A. and P. W. Schmidt, Theoretical analysis of thermomagnetic properties, low-temperature hysteresis and domain structure of titanomagnetites, Phys. Earth Planet. Inter., 30, 300–316, 1982.

    Article  Google Scholar 

  • Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc), 2. Application to data for rocks, sediments, and soils, J. Geophys. Res., 107, 2057, doi: 10.1029/2001JB000487, 2002.

  • Dunlop, D. J. and Ö. Özdemir, Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, Cambridge and New York, 1997.

    Book  Google Scholar 

  • Iwauchi, K, N. Koizumi, M. Kiyama, and Y Bando, Magnetic relaxation in Fe3O4 and ferrites, Bull. Inst. Chem. Res. Kyoto Univ., 54, 255–262, 1976.

    Google Scholar 

  • Jackson, M., B. Moskowitz, J. Rosenbaum, and C. Kissel, Field dependence of AC susceptibility in titanomagnetites, Earth Planet. Sci. Lett., 157, 129–139, 1998.

    Article  Google Scholar 

  • Janů, Z., J. Hadaĉ, and Z. Ŝvindrych, Glass-like and Verwey transitions in magnetite in details, J. Magn. Magn. Mat., 310, e203–e205, 2007.

    Article  Google Scholar 

  • Kosterov, A., Low-temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history, Geophys. J. Int., 154, 58–71, 2003.

    Article  Google Scholar 

  • Kronmüller, H. and F. Walz, Magnetic after-effects in Fe3O4 and vacancydoped magnetite, Phil. Mag., B42, 433–452, 1980.

    Article  Google Scholar 

  • Lenge, N. and H. Kronmuller, Electrical conductivity and magnetic aftereffect in the ordered phase of magnetite, Adv. Ceramics, 15, 331–339, 1984.

    Google Scholar 

  • Mizoguchi, M., Abrupt change of NMR line shape in the low temperature phase of Fe3O4, J. Phys. Soc. Jpn., 54, 4295–4299, 1985.

    Article  Google Scholar 

  • Moskowitz, B. M., M. Jackson, and C. Kissel, Low-temperature magnetic behavior of titanomagnetites, Earth Planet. Sci. Lett., 157, 141–149, 1998.

    Article  Google Scholar 

  • Mullins, C. E. and M. S. Tite, Magnetic viscosity, quadrature susceptibility, and frequency dependence of susceptibility in single-domain assemblages of magnetite and maghemite, J. Geophys. Res., 78, 804–809, 1973.

    Article  Google Scholar 

  • Muxworthy, A. R., Low-temperature susceptibility and hysteresis of magnetite, Earth Planet. Sci. Lett., 169, 51–58, 1999.

    Article  Google Scholar 

  • Muxworthy, A. R. and W Williams, Low-temperature viscous magnetization of multidomain magnetite: Evidence for disaccommodation contribution, J. Magn. Magn. Mat., 307, 113–119, 2006.

    Article  Google Scholar 

  • Özdemir, Ö., Coercive force of single crystals of magnetite at low temperatures, Geophys. J. Int., 141, 351–356, 2000.

    Article  Google Scholar 

  • Özdemir, Ö. and D. J. Dunlop, Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes, Earth Planet. Sci. Lett., 165, 229–239, 1999.

    Article  Google Scholar 

  • Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, Changes in remanence, coercivity and domain state at low temperature in magnetite, Earth Planet. Sci. Lett., 194, 343–358, 2002.

    Article  Google Scholar 

  • Rochette, P., G. Fillion, J.-L. Mattéi, and M. J. Dekkers, Magnetic transition at 30-34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks, Earth Planet. Sci. Lett., 98, 319–328, 1990.

    Article  Google Scholar 

  • Skumryev, V., H. J. Blythe, J. Cullen, and J. M. D. Coey, AC susceptibility of a magnetite crystal, J. Magn. Magn. Mat., 196-197, 515–517, 1999.

    Article  Google Scholar 

  • Walz, F. and H. Kronmüller, Evidence for a single-stage Verwey transition in perfect magnetite, Phil. Mag., B64, 623–628, 1991.

    Article  Google Scholar 

  • Walz, F. and H. Kronmüller, Analysis of magnetic point-defect relaxations in electron-irradiated magnetite, Phys. Stat. Sol., B181, 485–498, 1994.

    Article  Google Scholar 

  • Walz, F., V. A. M. Brabers, S. Chikazumi, H. Kronmuller, and M. O. Rigo, Magnetic after-effects in single- and poly-crystalline magnetite, Phys. Stat. Sol., B110, 471–478, 1982.

    Article  Google Scholar 

  • Walz, F., V. A. M. Brabers, and H. Kronmuller, Analysis of magnetite and related ferrites by means of magnetic after-effect-spectra, J. Phys. IV France, 7 suppl. C1, 569–572, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Dunlop.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Özdemir, Ö., Dunlop, D.J. & Jackson, M. Frequency and field dependent susceptibility of magnetite at low temperature. Earth Planet Sp 61, 125–131 (2009). https://doi.org/10.1186/BF03352892

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352892

Key words