Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Frequency and field dependent susceptibility of magnetite at low temperature


We report the temperature dependence of in-phase and quadrature susceptibilities, k′ and k″, between 20 K and 300 K for a stoichiometric natural single crystal of magnetite. Measurements were made for amplitudes of the AC driving field ranging from H = 30 A/m to 2 kA/m and frequencies ranging from f = 40 Hz to 4 kHz. In cubic magnetite above the Verwey transition, TV = 120 K, k′ is limited by self-demagnetization and does not vary greatly with T, H or f. As the crystal cools through TV and transforms to monoclinic structure, k′ decreases by about a factor 2, with a further more gradual decrease of 10-20% in cooling from 40 to 20 K. Saturation remanence also drops sharply at TV but shows no further change in cooling below 40 K. Thus it appears that domain walls remain pinned throughout the 20-40 K range but small segments undergo reversible oscillations in an AC field, the amplitude of oscillation decreasing steadily with cooling below 40 K. In this same range, k″ reaches a peak, while the temperature at which k′ decreases most rapidly changes with frequency. Both observations indicate that domain wall oscillations lag appreciably behind the driving field at very low temperature. Both k′ and k″ increase markedly with increasing AC field amplitude below TV. The field dependence is particularly strong below 40 K. Analysis of the k′(f) data between 20 and 40 K based on an Arrhenius thermal activation equation gives a pre-exponential frequency factor fo ≈ 2.5 × 108 s-1 and an activation energy ΔE = 0.035 eV. The ΔE is appropriate for electron hopping but fo suggests an indirect mechanism for wall mobility related to changes in electron ordering within walls.


  1. Abe, K., Y. Miyamoto, and S. Chikazumi, Magnetocrystalline anisotropy of low temperature phase of magnetite, J. Phys. Soc. Jpn., 41, 1894–1902, 1976.

  2. Balanda, M., A. Wiecheć, D. Kim, Z. Kąkol, A. Kozlowski, P. Niedziela, J. Sabol, Z. Tarnawski, and J. M. Honig, Magnetic AC susceptibility of stoichiometric and low zinc doped magnetite single crystals, Eur. Phys. J., B43, 201–212, 2005.

  3. Carter-Stiglitz, B., B. Moskowitz, P. Solheid, T. S. Berquó, M. Jackson, and A. Kosterov, Low-temperature magnetic behavior of multidomain titanomagnetites: TM0, TM16, and TM35, J. Geophys. Res., 111, B12S05, doi:10.1029/2006JB004561, 2006.

  4. Clark, D. A. and P. W. Schmidt, Theoretical analysis of thermomagnetic properties, low-temperature hysteresis and domain structure of titanomagnetites, Phys. Earth Planet. Inter., 30, 300–316, 1982.

  5. Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc), 2. Application to data for rocks, sediments, and soils, J. Geophys. Res., 107, 2057, doi: 10.1029/2001JB000487, 2002.

  6. Dunlop, D. J. and Ö. Özdemir, Rock Magnetism: Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, Cambridge and New York, 1997.

  7. Iwauchi, K, N. Koizumi, M. Kiyama, and Y Bando, Magnetic relaxation in Fe3O4 and ferrites, Bull. Inst. Chem. Res. Kyoto Univ., 54, 255–262, 1976.

  8. Jackson, M., B. Moskowitz, J. Rosenbaum, and C. Kissel, Field dependence of AC susceptibility in titanomagnetites, Earth Planet. Sci. Lett., 157, 129–139, 1998.

  9. Janů, Z., J. Hadaĉ, and Z. Ŝvindrych, Glass-like and Verwey transitions in magnetite in details, J. Magn. Magn. Mat., 310, e203–e205, 2007.

  10. Kosterov, A., Low-temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history, Geophys. J. Int., 154, 58–71, 2003.

  11. Kronmüller, H. and F. Walz, Magnetic after-effects in Fe3O4 and vacancydoped magnetite, Phil. Mag., B42, 433–452, 1980.

  12. Lenge, N. and H. Kronmuller, Electrical conductivity and magnetic aftereffect in the ordered phase of magnetite, Adv. Ceramics, 15, 331–339, 1984.

  13. Mizoguchi, M., Abrupt change of NMR line shape in the low temperature phase of Fe3O4, J. Phys. Soc. Jpn., 54, 4295–4299, 1985.

  14. Moskowitz, B. M., M. Jackson, and C. Kissel, Low-temperature magnetic behavior of titanomagnetites, Earth Planet. Sci. Lett., 157, 141–149, 1998.

  15. Mullins, C. E. and M. S. Tite, Magnetic viscosity, quadrature susceptibility, and frequency dependence of susceptibility in single-domain assemblages of magnetite and maghemite, J. Geophys. Res., 78, 804–809, 1973.

  16. Muxworthy, A. R., Low-temperature susceptibility and hysteresis of magnetite, Earth Planet. Sci. Lett., 169, 51–58, 1999.

  17. Muxworthy, A. R. and W Williams, Low-temperature viscous magnetization of multidomain magnetite: Evidence for disaccommodation contribution, J. Magn. Magn. Mat., 307, 113–119, 2006.

  18. Özdemir, Ö., Coercive force of single crystals of magnetite at low temperatures, Geophys. J. Int., 141, 351–356, 2000.

  19. Özdemir, Ö. and D. J. Dunlop, Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes, Earth Planet. Sci. Lett., 165, 229–239, 1999.

  20. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, Changes in remanence, coercivity and domain state at low temperature in magnetite, Earth Planet. Sci. Lett., 194, 343–358, 2002.

  21. Rochette, P., G. Fillion, J.-L. Mattéi, and M. J. Dekkers, Magnetic transition at 30-34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks, Earth Planet. Sci. Lett., 98, 319–328, 1990.

  22. Skumryev, V., H. J. Blythe, J. Cullen, and J. M. D. Coey, AC susceptibility of a magnetite crystal, J. Magn. Magn. Mat., 196-197, 515–517, 1999.

  23. Walz, F. and H. Kronmüller, Evidence for a single-stage Verwey transition in perfect magnetite, Phil. Mag., B64, 623–628, 1991.

  24. Walz, F. and H. Kronmüller, Analysis of magnetic point-defect relaxations in electron-irradiated magnetite, Phys. Stat. Sol., B181, 485–498, 1994.

  25. Walz, F., V. A. M. Brabers, S. Chikazumi, H. Kronmuller, and M. O. Rigo, Magnetic after-effects in single- and poly-crystalline magnetite, Phys. Stat. Sol., B110, 471–478, 1982.

  26. Walz, F., V. A. M. Brabers, and H. Kronmuller, Analysis of magnetite and related ferrites by means of magnetic after-effect-spectra, J. Phys. IV France, 7 suppl. C1, 569–572, 1997.

Download references

Author information



Corresponding author

Correspondence to David J. Dunlop.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Özdemir, Ö., Dunlop, D.J. & Jackson, M. Frequency and field dependent susceptibility of magnetite at low temperature. Earth Planet Sp 61, 125–131 (2009).

Download citation

Key words

  • Magnetite
  • susceptibility
  • low temperature
  • Verwey transition
  • frequency-dependent magnetization
  • field-dependent magnetization