Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Low-temperature magnetic properties of andesitic rocks from Popocatepetl stratovolcano, Mexico


To contribute to the growing database of magnetic properties of rocks and minerals at cryogenic temperatures, we have measured magnetization, low-field susceptibility, and hysteresis loops as a function of temperature between 2 K (10 K for hysteresis) and 300 K for twelve representative samples from a suite of volcanic rocks of predominantly andesitic composition erupted by the Popocatepetl stratovolcano, Mexico. High temperature susceptibility measurements have yielded Curie points (TC) mostly between 430 and 550°C, two samples additionally containing a magnetic phase with TC of 300-320°C, and one sample—with 140-170°C. Hysteresis measurements at room temperature have revealed invariably the presence of a low-coercivity mineral with coercive force ranging from 10 to 20 mT. This suggests that NRM of Popocatepetl rocks is carried by an intermediate titanomagnetite of composition between approximately TM04 and TM20. Thermal demagnetization of SIRM given at 2 K displays no evidence for the Verwey transition, further showing that samples are essentially magnetite free. At the same time, an inflection between 30-50 K reported previously for intermediate titanomagnetites (Moskowitz et al., EPSL, 157, 141-149, 1998) is seen in all studied Popocatepetl samples except one. As well, below 50 K the coercive force increases sharply with decreasing temperature reaching up to 100 mT at 10 K. On the other hand, examining the behavior of low-field susceptibility at cryogenic temperatures shows that susceptibility signal is dominated by intermediate titanomagnetites only in a part of our samples. In four out of 12 samples, however, susceptibility signal appears to be due to a hemoilmenite phase containing about 20 mole% of hematite. Caution is thus advised when interpreting low-temperature susceptibility data in terms of magnetic mineralogy.


  1. Carrasco-Nuñez, G., L. Silva, H. Delgado-Granados, and J. Urrutia-Fucugauchi, Geologia y paleomagnetismo del Popocatepetl, Mexico, DF, UNAM Publ. Ser. Inv. Inst. Geofis., no. 33, 1986.

  2. Conte, G., J. Urrutia-Fucugauchi, A. Goguitchaichvili, A. M. Soler-Arechalde, O. Morton-Bermea, and A. Incoronato, Paleomagnetic study of lavas from the Popocatepetl volcanic region, Central Mexico, Int. Geol. Rev., 46, 210–225, 2004.

  3. Dunlop, D. J., Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res., 107, 10.1029/2001JB000486, 2002.

  4. Haggerty, S. E., Opaque mineral oxides in terrestrial igneous rocks, in Oxide Minerals, edited by D. Rumble, Mineralogical Society of America Short Course Notes, 3, Hg101–Hg300, 1976.

  5. Haggerty, S. E., Oxide textures—A mini-atlas, in Oxide Minerals: petro-logic and magnetic significance, edited by D. L. Lindsley, Rev. Mineral., 25, 129–219, 1991.

  6. Heider, F, D. J. Dunlop, and H. C. Soffel, Low-temperature and alternating field demagnetization of saturation remanence and thermoremanence in magnetite grains (0.037 mkm to 5 mm), J. Geophys. Res., 97, 9371–9381, 1992.

  7. Ishikawa, Y., N. Saito, M. Arai, Y. Watanabe, and H. Takei, A new oxide spin glass system of (1 - x)FeTiO3-xFe2O3. I. Magnetic properties, J. Phys. Soc. Jpn., 54, 312–325, 1985.

  8. Jackson, M., B. M. Moskowitz, J. Rosenbaum, and C. Kissel, Field dependence of AC susceptibility in titanomagnetites, Earth Planet. Sci. Lett., 157, 129–139, 1998.

  9. Kontny, A., C. Vahle, and H. de Wall, Characteristic magnetic behavior of subaerial and submarine lava units from the Hawaiian Scientific Drilling Project (HSDP-2), Geochem. Geophys. Geosyst., 4, 8703, doi:10.1029/2002GC000304, 2003.

  10. Kosterov, A., Magnetic properties of subaerial basalts at low temperatures, Earth Planets Space, 53, 883–892, 2001.

  11. Kosterov, A., Low-temperature magnetization and AC susceptibility of magnetite: effect of thermomagnetic history, Geophys. J. Int., 154, 58–71, 2003.

  12. Kosterov, A., Low-temperature magnetic properties, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero-Bervera, Springer, Dortrecht, The Netherlands, 515–525, 2007.

  13. Kozłowski, A., Z. Kąkol, D. Kim, R. Zaleski, and J. M. Honig, Heat capacity of Fe3-αMαO4 (M = Zn, Ti, 0 ≤ α ≤ 0.04), Phys. Rev. B, 54, 12093–12098, 1996.

  14. Moskowitz, B. M., M. Jackson, and C. Kissel, Low-temperature magnetic behavior of titanomagnetites, Earth Planet. Sci. Lett., 157, 141–149, 1998.

  15. Muxworthy, A. R., Low-temperature susceptibility and hysteresis of magnetite, Earth Planet. Sci. Lett., 169, 51–58, 1999.

  16. Muxworthy, A. R. and E. McClelland, The causes of low-temperature demagnetization of remanence in multidomain magnetite, Geophys. J. Int., 140, 115–131, 2000.

  17. Muxworthy, A. R., D. J. Dunlop, and Ö. Özdemir, Low-temperature cycling of isothermal and anhysteretic remanence: microcoercivity and magnetic memory, Earth Planet. Sci. Lett., 205, 173–184, 2003.

  18. Radhakrishnamurty, C, S. D. Likhite, E. R. Deutsch, and G. S. Murthy, A comparison of the magnetic properties of synthetic titanomagnetites and basalts, Phys. Earth Planet. Inter., 26, 37–46, 1981.

  19. Senanayake, W E. and M. W McElhinny, Hysteresis and susceptibility characteristics of magnetite and titanomagnetites: interpretation of results from basaltic rocks, Phys. Earth Planet. Inter., 26, 47–55, 1981.

  20. Senanayake, W E. and M. W McElhinny, The effects of heating on low-temperature hysteresis and susceptibility properties of basalts, Phys. Earth Planet. Inter., 30, 317–321, 1982.

  21. Shau, Y.-H., M. Torii, C.-S. Horng, and D. R. Peacor, Subsolidus evolution and alteration of titanomagnetite in ocean ridge basalts from Deep Sea Drilling Project/Ocean Drilling Program Hole 504B, Leg 83: Implications for the timing of magnetization, J. Geophys. Res., 105, 23635–23649, 2000.

  22. Skumryev, V., H. J. Blythe, J. Cullen, and J. M. D. Coey, AC susceptibility of a magnetite crystal, J. Magn. Magn. Mater., 196–197, 515–517, 1999.

  23. Thomas, N., An integrated rock magnetic approach to the selection or rejection of ancient basalt samples for palaeointensity experiments, Phys. Earth Planet. Inter., 75, 329–342, 1993.

  24. Urrutia-Fucugauchi, J., C. Radhakrishnamurty, and J. F. W. Negendank, Magnetic properties of a columnar basalt from central Mexico, Geophys. Res. Lett., 11, 832–835, 1984.

  25. Yamamoto, Y., Possible TCRM acquisition of the Kilauea 1960 lava, Hawaii: failure of the Thellier paleointensity determination inferred from equilibrium temperature of the Fe-Ti oxide, Earth Planets Space, 58, 1033–1044, 2006.

Download references

Author information



Corresponding author

Correspondence to Andrei Kosterov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kosterov, A., Conte, G., Goguitchaichvili, A. et al. Low-temperature magnetic properties of andesitic rocks from Popocatepetl stratovolcano, Mexico. Earth Planet Sp 61, 133–142 (2009).

Download citation

Key words

  • Titanomagnetite
  • hemoilmenite
  • low-temperature magnetic properties
  • andesites