Skip to main content


Formation of magnetite in Magnetospirillum gryphiswaldense studied with FORC diagrams

Article metrics

  • 320 Accesses

  • 24 Citations


In order to study the formation of magnetite in magnetotactic bacteria, FORC diagrams were measured on a set of cultured Magnetospirillum gryphiswaldense, following an assay in which the iron uptake is used only for magnetite formation and not for cell growth. This enabled us to follow the magnetite formation independently of growth. The FORC diagrams showed a clear evolution from a size-distribution with a majority of superparamagnetic grains, to a distribution dominated by stable, single-domain grains, but still containing some superparamagnetic particles. TEM observations confirm this evolution. According to the saturation isothermal remanent magnetization cooling and warming curves, the Verwey transition can only be seen in the most mature samples, and slightly below 120 K. This suggests that the samples may have suffered from some partial oxidation.


  1. Bazylinski, D. A. and R. B. Frankel, Magnetosome formation in Prokary-otes, Nature Rev. Microbiol., 2, 217–230, 2004.

  2. Blakemore, R. P., Magnetotactic bacteria, Science, 190, 377–379, 1975.

  3. Carvallo, C., A. R. Muxworthy, D. J. Dunlop, and W. Williams, Micro-magnetic modeling of first-order reversal curve (FORC) diagrams for single-domain and pseudo-single-domain magnetite, Earth Planet. Sci. Lett., 213, 375–390, 2003.

  4. Carvallo, C., Ö. Özdemir, and D. J. Dunlop, First-order reversal curve (FORC) diagrams of elongated single-domain grains at high and low temperatures, J. Geophys. Res., 109, doi/ 10.1029/2003JB002539, 2004.

  5. Chang, S. B. R. and J. L. Kirschvink, Magnetofossils, the magnetization of sediments and the evolution of magnetite biomineralization, Ann. Rev. Earth Planet. Sci., 17, 169–195, 1989.

  6. Chen, A. P., R. Egli, and B. M. Moskowitz, First-order reversal curve (FORC) diagrams of natural and cultured biogenic magnetic particles, J. Geophys. Res., 112, doi/ 10.1029/2006JB004575, 2007.

  7. Coker, V. S., C. I. Pearce, C. Lang, G. van der Laan, R. A. D. Pattrick, N. D. Telling, D. Schüler, E. Arenholz, and J. R. Lloyd, Cation site occupancy of biogenic magnetite compared to polygenic ferrite spinels determined by X-ray magnetic circular dichroism, Eur. J. Mineral., 19, 707–716, 2007.

  8. Devouard, B., M. Posfai, X. Hua, D. A. Bazylinski, R. B. Frankel, and P. R. Buseck, Magnetite from magnetotactic bacteria: Size distributions and twinning, Am. Mineral., 83, 1387–1398, 1998.

  9. Dunin-Borkowski, R. E., M. R. McCartney, R. B. Frankel, D. A. Bazylinski, M. Pósfai, and P. R. Buseck, Magnetic microstructure of magnetotactic bacteria by electron holography, Science, 282, 1868–1870, 1998.

  10. Dunlop, D. and Ö. Özdemir, Rock Magnetism: Fundamentals and Frontiers. Cambridge Studies in Magnetism, Cambridge Univ. Press, 3, New York, 1997.

  11. Egli, R., Analysis of the field dependence of remanent magnetization curves, J. Geophys. Res., 108(B2), 2081, doi:10.1029/2002JB002023, 2003.

  12. Egli, R., Theoretical aspects of dipolar interactions and their appearance in first-order reversal curves of thermally activated single-domain particles, J. Geophys. Res., 111, B12S17, doi:10.129/2001JB000671, 2006.

  13. Faivre, D. and P. Zuddas, An integrated approach for determining the origin of magnetite nanoparticles, Earth Planet. Sci. Lett., 243, 53–60, 2006.

  14. Faivre, D., L. H. Bőttger, B. F. Matzanke, and D. Schüler, Intracellular Magnetite Biomineralization in Bacteria Proceeds by a Disctinct Pathway Involving Memberane-bound Ferritin and Iron-II Species, Angew. Chem. Int. Ed., 46, 8495–8499, doi:10.1002/anie.200700927, 2007.

  15. Faivre, D., N. Menguy, M. Pósfai, and D. Schüler, Fast-growing magnetosomes exhibit lack of biological control over magnetite biomineralization, Am. Mineral., 93, 463–469, 2008.

  16. Friedmann, E. I., J. Wierzchos, C. Ascaso, and M. Winklhofer, Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin, Proc. Natl. Acad. Sci. USA, 98, 2176–2181, 2001.

  17. Kasama, T., M. Pósfai, R. K. K. Chong, A. P. Finlayson, P. R. Buseck, R. B. Frankel, and R. E. Dunin-Borkowski, Magnetic properties, microstructure, composition and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography, Am. Mineral., 91, 1216–1229, 2006.

  18. Komeili, A., Z. Li, D. K. Newman, and G. J. Jensen, Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK, Science, 311, 242–245, 2006.

  19. Kopp, R. E. and J. L. Kirschvink, The identification and biogeochemical interpretation of fossil magnetotactic bacteria, Earth Sci. Rev., doi: 10.1016/j.earscirev.2007.08.001, 2007.

  20. Lang, C., D. Schüler, and D. Faivre, Synthesis of Magnetite Nanoparticles for Bio- and Nanotechnology: Genetic Engineering and Biomimetics of Bacterial Magnetosomes, Macromol. Biosci., 7, 144–151, 2007.

  21. Matsunaga, T., T. Suzuki, M. Tanaka, and A. Arakaki, Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology, Trends Biotechnol., 25, 182–188, 2007.

  22. McKay, D. S., E. K. Gibson Jr., H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Cilier, C. R. Maechling, and R. N. Zare, Search for Past Life on Mars: Possible Relic Biogenic in Martian Meteorite ALH84001, Science, 273, 924–930, 1996.

  23. Moskowitz, B. M., R. B. Frankel, D. A. Bazylinski, H. W. Jannasch, and D. R. Lovley, A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria, Geophys. Res. Lett., 16, 665–668, 1989.

  24. Moskowitz, B. M., R. B. Frankel, and D. A. Bazylinski, Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283–300, 1993.

  25. Muxworthy, A. R. and W. Williams, Magnetostatic interaction fields in first-order reversal curve (FORC) diagrams, J. Appl. Phys., 97, 063905, 2005.

  26. Muxworthy, A. R. and A. P. Roberts, First-order reversal curve (FORC) diagrams, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero-Bervera, Springer, New York, 2006.

  27. Néel, L., Remarques sur la théorie des propriétés magnétiques des substances dures, Appl. Sci. Res., B4, 13–24, 1954.

  28. Newell, A. J., A high-precision model of first-order reversal curve (FORC) functions for single-domain ferromagnets with uniaxial anisotropy, Geochem. Geophys. Geosyst., 6, Q05010, doi: 10.1029/2004GC000877, 2005.

  29. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671–1674, 1993.

  30. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, Changes in coercivity, remanence, and domain state at low temperature in magnetite, Earth Planet. Sci. Lett., 194, 343–358, 2002.

  31. Pan, Y., N. Petersen, M. Winklhofer, A. F. Davila, Q. Liu, T. Frederichs, M. Hanzlik, and R. Zhu, Rock magnetic properties of uncultured magnetotactic bacteria, Earth Planet. Sci. Lett., 237, 311–325, 2005.

  32. Penninga, I., H. D. Waard, B. M. Moskowitz, D. A. Bazylinski, R. B. Frankel, and R. B. Frankel, Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field, J. Magn. Magn. Mater., 149, 279–286, 1995.

  33. Petersen, N., T. van Dobeneck, and H. Vali, Fossil bacterial magnetite in deep sea sediments from the South Atlantic Ocean, Nature, 320(6063), 611–615, 1986.

  34. Pike, C. R., A. P. Roberts, and K. L. Verosub, Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667, 1999.

  35. Preisach, F., Uber die magnetische Nachwirkung, Z. Phys., 94, 277–302, 1935.

  36. Prozorov, R., T. Prozorov, S. K. Mallapragada, B. Narasimhan, T. J. Williams, and D. A. Bazylinski, Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite, Phys. Rev. B, 76, 054406, 2007.

  37. Roberts, A. P., C. R. Pike, and K. L. Verosub, FORC diagrams: a new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 100, 17909–17924, 2000.

  38. Scheffel, A., M. Gruska, D. Faivre, A. Linaroudis, J. M. Plitzko, and D. Schuler, An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria, Nature, 440, 110–114, 2006.

  39. Tang, J. T., M. Myers, K. A. Bosnick, and L. E. Brus, Magnetite Fe3O4 nanocrystals: Spectroscopic observation of aqueous oxidation kinetics, J. Phys. Chem. B, 107, 7501–7506, 2003.

  40. Tauxe, L., H. Neal Bertram, and C. Seberino, Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetism, Geochem. Geophys. Geosyst., 3, doi: 10.1029/2001GC000241, 2002.

  41. Thomas-Keprta, K. L., D. A. Bazylinski, J. L. Kirschvink, S. J. Clemett, D. S. McKay, S. J. Wentworth, H. Vali, E. K. Gibson Jr., and C. S. Romanek, Elongated prismatic crystals in AL84001 carbonate globules: Potential Martian Magnetofossils, Geochim. Cosmochim. Acta, 64, 4049–4081, 2000.

  42. Weiss, B. P., S. S. Kim, J. L. Kirschvink, R. E. Kopp, M. Sankaran, A. Kobayashi, and A. Komeili, Magnetic tests for magnetosome chains in Martian meteorite ALH84001, Geochim. Cosmochim. Acta, 101, 8281–8284, 2004.

  43. Winklhofer, M. and G. T. Zimanyi, Extracting the intrinsic switching field distribution in perpendicular media: A comparative analysis, J. Appl. Phys., 99, 08E710, doi:10.1063/1.2176598, 2006.

Download references

Author information

Correspondence to Claire Carvallo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carvallo, C., Hickey, S., Faivre, D. et al. Formation of magnetite in Magnetospirillum gryphiswaldense studied with FORC diagrams. Earth Planet Sp 61, 143–150 (2009) doi:10.1186/BF03352894

Download citation

Key words

  • Magnetotactic bacteria
  • FORC diagrams
  • magnetite