Skip to main content

Volume 61 Supplement 1

Special Issue: Magnetism of Volcanic Materials-Tribute to Works of Michel Prévot

Formation of magnetite in Magnetospirillum gryphiswaldense studied with FORC diagrams

Abstract

In order to study the formation of magnetite in magnetotactic bacteria, FORC diagrams were measured on a set of cultured Magnetospirillum gryphiswaldense, following an assay in which the iron uptake is used only for magnetite formation and not for cell growth. This enabled us to follow the magnetite formation independently of growth. The FORC diagrams showed a clear evolution from a size-distribution with a majority of superparamagnetic grains, to a distribution dominated by stable, single-domain grains, but still containing some superparamagnetic particles. TEM observations confirm this evolution. According to the saturation isothermal remanent magnetization cooling and warming curves, the Verwey transition can only be seen in the most mature samples, and slightly below 120 K. This suggests that the samples may have suffered from some partial oxidation.

References

  • Bazylinski, D. A. and R. B. Frankel, Magnetosome formation in Prokary-otes, Nature Rev. Microbiol., 2, 217–230, 2004.

    Article  Google Scholar 

  • Blakemore, R. P., Magnetotactic bacteria, Science, 190, 377–379, 1975.

    Article  Google Scholar 

  • Carvallo, C., A. R. Muxworthy, D. J. Dunlop, and W. Williams, Micro-magnetic modeling of first-order reversal curve (FORC) diagrams for single-domain and pseudo-single-domain magnetite, Earth Planet. Sci. Lett., 213, 375–390, 2003.

    Article  Google Scholar 

  • Carvallo, C., Ö. Özdemir, and D. J. Dunlop, First-order reversal curve (FORC) diagrams of elongated single-domain grains at high and low temperatures, J. Geophys. Res., 109, doi/ 10.1029/2003JB002539, 2004.

  • Chang, S. B. R. and J. L. Kirschvink, Magnetofossils, the magnetization of sediments and the evolution of magnetite biomineralization, Ann. Rev. Earth Planet. Sci., 17, 169–195, 1989.

    Article  Google Scholar 

  • Chen, A. P., R. Egli, and B. M. Moskowitz, First-order reversal curve (FORC) diagrams of natural and cultured biogenic magnetic particles, J. Geophys. Res., 112, doi/ 10.1029/2006JB004575, 2007.

  • Coker, V. S., C. I. Pearce, C. Lang, G. van der Laan, R. A. D. Pattrick, N. D. Telling, D. Schüler, E. Arenholz, and J. R. Lloyd, Cation site occupancy of biogenic magnetite compared to polygenic ferrite spinels determined by X-ray magnetic circular dichroism, Eur. J. Mineral., 19, 707–716, 2007.

    Article  Google Scholar 

  • Devouard, B., M. Posfai, X. Hua, D. A. Bazylinski, R. B. Frankel, and P. R. Buseck, Magnetite from magnetotactic bacteria: Size distributions and twinning, Am. Mineral., 83, 1387–1398, 1998.

    Google Scholar 

  • Dunin-Borkowski, R. E., M. R. McCartney, R. B. Frankel, D. A. Bazylinski, M. Pósfai, and P. R. Buseck, Magnetic microstructure of magnetotactic bacteria by electron holography, Science, 282, 1868–1870, 1998.

    Article  Google Scholar 

  • Dunlop, D. and Ö. Özdemir, Rock Magnetism: Fundamentals and Frontiers. Cambridge Studies in Magnetism, Cambridge Univ. Press, 3, New York, 1997.

    Book  Google Scholar 

  • Egli, R., Analysis of the field dependence of remanent magnetization curves, J. Geophys. Res., 108(B2), 2081, doi:10.1029/2002JB002023, 2003.

    Article  Google Scholar 

  • Egli, R., Theoretical aspects of dipolar interactions and their appearance in first-order reversal curves of thermally activated single-domain particles, J. Geophys. Res., 111, B12S17, doi:10.129/2001JB000671, 2006.

    Google Scholar 

  • Faivre, D. and P. Zuddas, An integrated approach for determining the origin of magnetite nanoparticles, Earth Planet. Sci. Lett., 243, 53–60, 2006.

    Article  Google Scholar 

  • Faivre, D., L. H. Bőttger, B. F. Matzanke, and D. Schüler, Intracellular Magnetite Biomineralization in Bacteria Proceeds by a Disctinct Pathway Involving Memberane-bound Ferritin and Iron-II Species, Angew. Chem. Int. Ed., 46, 8495–8499, doi:10.1002/anie.200700927, 2007.

    Article  Google Scholar 

  • Faivre, D., N. Menguy, M. Pósfai, and D. Schüler, Fast-growing magnetosomes exhibit lack of biological control over magnetite biomineralization, Am. Mineral., 93, 463–469, 2008.

    Article  Google Scholar 

  • Friedmann, E. I., J. Wierzchos, C. Ascaso, and M. Winklhofer, Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin, Proc. Natl. Acad. Sci. USA, 98, 2176–2181, 2001.

    Article  Google Scholar 

  • Kasama, T., M. Pósfai, R. K. K. Chong, A. P. Finlayson, P. R. Buseck, R. B. Frankel, and R. E. Dunin-Borkowski, Magnetic properties, microstructure, composition and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography, Am. Mineral., 91, 1216–1229, 2006.

    Article  Google Scholar 

  • Komeili, A., Z. Li, D. K. Newman, and G. J. Jensen, Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK, Science, 311, 242–245, 2006.

    Article  Google Scholar 

  • Kopp, R. E. and J. L. Kirschvink, The identification and biogeochemical interpretation of fossil magnetotactic bacteria, Earth Sci. Rev., doi: 10.1016/j.earscirev.2007.08.001, 2007.

    Google Scholar 

  • Lang, C., D. Schüler, and D. Faivre, Synthesis of Magnetite Nanoparticles for Bio- and Nanotechnology: Genetic Engineering and Biomimetics of Bacterial Magnetosomes, Macromol. Biosci., 7, 144–151, 2007.

    Article  Google Scholar 

  • Matsunaga, T., T. Suzuki, M. Tanaka, and A. Arakaki, Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology, Trends Biotechnol., 25, 182–188, 2007.

    Article  Google Scholar 

  • McKay, D. S., E. K. Gibson Jr., H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Cilier, C. R. Maechling, and R. N. Zare, Search for Past Life on Mars: Possible Relic Biogenic in Martian Meteorite ALH84001, Science, 273, 924–930, 1996.

    Article  Google Scholar 

  • Moskowitz, B. M., R. B. Frankel, D. A. Bazylinski, H. W. Jannasch, and D. R. Lovley, A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria, Geophys. Res. Lett., 16, 665–668, 1989.

    Article  Google Scholar 

  • Moskowitz, B. M., R. B. Frankel, and D. A. Bazylinski, Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283–300, 1993.

    Article  Google Scholar 

  • Muxworthy, A. R. and W. Williams, Magnetostatic interaction fields in first-order reversal curve (FORC) diagrams, J. Appl. Phys., 97, 063905, 2005.

    Article  Google Scholar 

  • Muxworthy, A. R. and A. P. Roberts, First-order reversal curve (FORC) diagrams, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero-Bervera, Springer, New York, 2006.

    Google Scholar 

  • Néel, L., Remarques sur la théorie des propriétés magnétiques des substances dures, Appl. Sci. Res., B4, 13–24, 1954.

    Google Scholar 

  • Newell, A. J., A high-precision model of first-order reversal curve (FORC) functions for single-domain ferromagnets with uniaxial anisotropy, Geochem. Geophys. Geosyst., 6, Q05010, doi: 10.1029/2004GC000877, 2005.

    Article  Google Scholar 

  • Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671–1674, 1993.

    Article  Google Scholar 

  • Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, Changes in coercivity, remanence, and domain state at low temperature in magnetite, Earth Planet. Sci. Lett., 194, 343–358, 2002.

    Article  Google Scholar 

  • Pan, Y., N. Petersen, M. Winklhofer, A. F. Davila, Q. Liu, T. Frederichs, M. Hanzlik, and R. Zhu, Rock magnetic properties of uncultured magnetotactic bacteria, Earth Planet. Sci. Lett., 237, 311–325, 2005.

    Article  Google Scholar 

  • Penninga, I., H. D. Waard, B. M. Moskowitz, D. A. Bazylinski, R. B. Frankel, and R. B. Frankel, Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field, J. Magn. Magn. Mater., 149, 279–286, 1995.

    Article  Google Scholar 

  • Petersen, N., T. van Dobeneck, and H. Vali, Fossil bacterial magnetite in deep sea sediments from the South Atlantic Ocean, Nature, 320(6063), 611–615, 1986.

    Article  Google Scholar 

  • Pike, C. R., A. P. Roberts, and K. L. Verosub, Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667, 1999.

    Article  Google Scholar 

  • Preisach, F., Uber die magnetische Nachwirkung, Z. Phys., 94, 277–302, 1935.

    Article  Google Scholar 

  • Prozorov, R., T. Prozorov, S. K. Mallapragada, B. Narasimhan, T. J. Williams, and D. A. Bazylinski, Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite, Phys. Rev. B, 76, 054406, 2007.

    Article  Google Scholar 

  • Roberts, A. P., C. R. Pike, and K. L. Verosub, FORC diagrams: a new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 100, 17909–17924, 2000.

    Article  Google Scholar 

  • Scheffel, A., M. Gruska, D. Faivre, A. Linaroudis, J. M. Plitzko, and D. Schuler, An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria, Nature, 440, 110–114, 2006.

    Article  Google Scholar 

  • Tang, J. T., M. Myers, K. A. Bosnick, and L. E. Brus, Magnetite Fe3O4 nanocrystals: Spectroscopic observation of aqueous oxidation kinetics, J. Phys. Chem. B, 107, 7501–7506, 2003.

    Article  Google Scholar 

  • Tauxe, L., H. Neal Bertram, and C. Seberino, Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetism, Geochem. Geophys. Geosyst., 3, doi: 10.1029/2001GC000241, 2002.

  • Thomas-Keprta, K. L., D. A. Bazylinski, J. L. Kirschvink, S. J. Clemett, D. S. McKay, S. J. Wentworth, H. Vali, E. K. Gibson Jr., and C. S. Romanek, Elongated prismatic crystals in AL84001 carbonate globules: Potential Martian Magnetofossils, Geochim. Cosmochim. Acta, 64, 4049–4081, 2000.

    Article  Google Scholar 

  • Weiss, B. P., S. S. Kim, J. L. Kirschvink, R. E. Kopp, M. Sankaran, A. Kobayashi, and A. Komeili, Magnetic tests for magnetosome chains in Martian meteorite ALH84001, Geochim. Cosmochim. Acta, 101, 8281–8284, 2004.

    Google Scholar 

  • Winklhofer, M. and G. T. Zimanyi, Extracting the intrinsic switching field distribution in perpendicular media: A comparative analysis, J. Appl. Phys., 99, 08E710, doi:10.1063/1.2176598, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Carvallo.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Carvallo, C., Hickey, S., Faivre, D. et al. Formation of magnetite in Magnetospirillum gryphiswaldense studied with FORC diagrams. Earth Planet Sp 61, 143–150 (2009). https://doi.org/10.1186/BF03352894

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352894

Key words