Skip to main content

Formation of magnetite in Magnetospirillum gryphiswaldense studied with FORC diagrams

Abstract

In order to study the formation of magnetite in magnetotactic bacteria, FORC diagrams were measured on a set of cultured Magnetospirillum gryphiswaldense, following an assay in which the iron uptake is used only for magnetite formation and not for cell growth. This enabled us to follow the magnetite formation independently of growth. The FORC diagrams showed a clear evolution from a size-distribution with a majority of superparamagnetic grains, to a distribution dominated by stable, single-domain grains, but still containing some superparamagnetic particles. TEM observations confirm this evolution. According to the saturation isothermal remanent magnetization cooling and warming curves, the Verwey transition can only be seen in the most mature samples, and slightly below 120 K. This suggests that the samples may have suffered from some partial oxidation.

References

  1. Bazylinski, D. A. and R. B. Frankel, Magnetosome formation in Prokary-otes, Nature Rev. Microbiol., 2, 217–230, 2004.

    Article  Google Scholar 

  2. Blakemore, R. P., Magnetotactic bacteria, Science, 190, 377–379, 1975.

    Article  Google Scholar 

  3. Carvallo, C., A. R. Muxworthy, D. J. Dunlop, and W. Williams, Micro-magnetic modeling of first-order reversal curve (FORC) diagrams for single-domain and pseudo-single-domain magnetite, Earth Planet. Sci. Lett., 213, 375–390, 2003.

    Article  Google Scholar 

  4. Carvallo, C., Ö. Özdemir, and D. J. Dunlop, First-order reversal curve (FORC) diagrams of elongated single-domain grains at high and low temperatures, J. Geophys. Res., 109, doi/ 10.1029/2003JB002539, 2004.

  5. Chang, S. B. R. and J. L. Kirschvink, Magnetofossils, the magnetization of sediments and the evolution of magnetite biomineralization, Ann. Rev. Earth Planet. Sci., 17, 169–195, 1989.

    Article  Google Scholar 

  6. Chen, A. P., R. Egli, and B. M. Moskowitz, First-order reversal curve (FORC) diagrams of natural and cultured biogenic magnetic particles, J. Geophys. Res., 112, doi/ 10.1029/2006JB004575, 2007.

  7. Coker, V. S., C. I. Pearce, C. Lang, G. van der Laan, R. A. D. Pattrick, N. D. Telling, D. Schüler, E. Arenholz, and J. R. Lloyd, Cation site occupancy of biogenic magnetite compared to polygenic ferrite spinels determined by X-ray magnetic circular dichroism, Eur. J. Mineral., 19, 707–716, 2007.

    Article  Google Scholar 

  8. Devouard, B., M. Posfai, X. Hua, D. A. Bazylinski, R. B. Frankel, and P. R. Buseck, Magnetite from magnetotactic bacteria: Size distributions and twinning, Am. Mineral., 83, 1387–1398, 1998.

    Google Scholar 

  9. Dunin-Borkowski, R. E., M. R. McCartney, R. B. Frankel, D. A. Bazylinski, M. Pósfai, and P. R. Buseck, Magnetic microstructure of magnetotactic bacteria by electron holography, Science, 282, 1868–1870, 1998.

    Article  Google Scholar 

  10. Dunlop, D. and Ö. Özdemir, Rock Magnetism: Fundamentals and Frontiers. Cambridge Studies in Magnetism, Cambridge Univ. Press, 3, New York, 1997.

    Google Scholar 

  11. Egli, R., Analysis of the field dependence of remanent magnetization curves, J. Geophys. Res., 108(B2), 2081, doi:10.1029/2002JB002023, 2003.

    Article  Google Scholar 

  12. Egli, R., Theoretical aspects of dipolar interactions and their appearance in first-order reversal curves of thermally activated single-domain particles, J. Geophys. Res., 111, B12S17, doi:10.129/2001JB000671, 2006.

    Google Scholar 

  13. Faivre, D. and P. Zuddas, An integrated approach for determining the origin of magnetite nanoparticles, Earth Planet. Sci. Lett., 243, 53–60, 2006.

    Article  Google Scholar 

  14. Faivre, D., L. H. Bőttger, B. F. Matzanke, and D. Schüler, Intracellular Magnetite Biomineralization in Bacteria Proceeds by a Disctinct Pathway Involving Memberane-bound Ferritin and Iron-II Species, Angew. Chem. Int. Ed., 46, 8495–8499, doi:10.1002/anie.200700927, 2007.

    Article  Google Scholar 

  15. Faivre, D., N. Menguy, M. Pósfai, and D. Schüler, Fast-growing magnetosomes exhibit lack of biological control over magnetite biomineralization, Am. Mineral., 93, 463–469, 2008.

    Article  Google Scholar 

  16. Friedmann, E. I., J. Wierzchos, C. Ascaso, and M. Winklhofer, Chains of magnetite crystals in the meteorite ALH84001: Evidence of biological origin, Proc. Natl. Acad. Sci. USA, 98, 2176–2181, 2001.

    Article  Google Scholar 

  17. Kasama, T., M. Pósfai, R. K. K. Chong, A. P. Finlayson, P. R. Buseck, R. B. Frankel, and R. E. Dunin-Borkowski, Magnetic properties, microstructure, composition and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography, Am. Mineral., 91, 1216–1229, 2006.

    Article  Google Scholar 

  18. Komeili, A., Z. Li, D. K. Newman, and G. J. Jensen, Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK, Science, 311, 242–245, 2006.

    Article  Google Scholar 

  19. Kopp, R. E. and J. L. Kirschvink, The identification and biogeochemical interpretation of fossil magnetotactic bacteria, Earth Sci. Rev., doi: 10.1016/j.earscirev.2007.08.001, 2007.

    Google Scholar 

  20. Lang, C., D. Schüler, and D. Faivre, Synthesis of Magnetite Nanoparticles for Bio- and Nanotechnology: Genetic Engineering and Biomimetics of Bacterial Magnetosomes, Macromol. Biosci., 7, 144–151, 2007.

    Article  Google Scholar 

  21. Matsunaga, T., T. Suzuki, M. Tanaka, and A. Arakaki, Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology, Trends Biotechnol., 25, 182–188, 2007.

    Article  Google Scholar 

  22. McKay, D. S., E. K. Gibson Jr., H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Cilier, C. R. Maechling, and R. N. Zare, Search for Past Life on Mars: Possible Relic Biogenic in Martian Meteorite ALH84001, Science, 273, 924–930, 1996.

    Article  Google Scholar 

  23. Moskowitz, B. M., R. B. Frankel, D. A. Bazylinski, H. W. Jannasch, and D. R. Lovley, A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron-reducing bacteria, Geophys. Res. Lett., 16, 665–668, 1989.

    Article  Google Scholar 

  24. Moskowitz, B. M., R. B. Frankel, and D. A. Bazylinski, Rock magnetic criteria for the detection of biogenic magnetite, Earth Planet. Sci. Lett., 120, 283–300, 1993.

    Article  Google Scholar 

  25. Muxworthy, A. R. and W. Williams, Magnetostatic interaction fields in first-order reversal curve (FORC) diagrams, J. Appl. Phys., 97, 063905, 2005.

    Article  Google Scholar 

  26. Muxworthy, A. R. and A. P. Roberts, First-order reversal curve (FORC) diagrams, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by D. Gubbins and E. Herrero-Bervera, Springer, New York, 2006.

    Google Scholar 

  27. Néel, L., Remarques sur la théorie des propriétés magnétiques des substances dures, Appl. Sci. Res., B4, 13–24, 1954.

    Google Scholar 

  28. Newell, A. J., A high-precision model of first-order reversal curve (FORC) functions for single-domain ferromagnets with uniaxial anisotropy, Geochem. Geophys. Geosyst., 6, Q05010, doi: 10.1029/2004GC000877, 2005.

    Article  Google Scholar 

  29. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, The effect of oxidation on the Verwey transition in magnetite, Geophys. Res. Lett., 20, 1671–1674, 1993.

    Article  Google Scholar 

  30. Özdemir, Ö., D. J. Dunlop, and B. M. Moskowitz, Changes in coercivity, remanence, and domain state at low temperature in magnetite, Earth Planet. Sci. Lett., 194, 343–358, 2002.

    Article  Google Scholar 

  31. Pan, Y., N. Petersen, M. Winklhofer, A. F. Davila, Q. Liu, T. Frederichs, M. Hanzlik, and R. Zhu, Rock magnetic properties of uncultured magnetotactic bacteria, Earth Planet. Sci. Lett., 237, 311–325, 2005.

    Article  Google Scholar 

  32. Penninga, I., H. D. Waard, B. M. Moskowitz, D. A. Bazylinski, R. B. Frankel, and R. B. Frankel, Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field, J. Magn. Magn. Mater., 149, 279–286, 1995.

    Article  Google Scholar 

  33. Petersen, N., T. van Dobeneck, and H. Vali, Fossil bacterial magnetite in deep sea sediments from the South Atlantic Ocean, Nature, 320(6063), 611–615, 1986.

    Article  Google Scholar 

  34. Pike, C. R., A. P. Roberts, and K. L. Verosub, Characterizing interactions in fine magnetic particle systems using first order reversal curves, J. Appl. Phys., 85, 6660–6667, 1999.

    Article  Google Scholar 

  35. Preisach, F., Uber die magnetische Nachwirkung, Z. Phys., 94, 277–302, 1935.

    Article  Google Scholar 

  36. Prozorov, R., T. Prozorov, S. K. Mallapragada, B. Narasimhan, T. J. Williams, and D. A. Bazylinski, Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite, Phys. Rev. B, 76, 054406, 2007.

    Article  Google Scholar 

  37. Roberts, A. P., C. R. Pike, and K. L. Verosub, FORC diagrams: a new tool for characterizing the magnetic properties of natural samples, J. Geophys. Res., 100, 17909–17924, 2000.

    Article  Google Scholar 

  38. Scheffel, A., M. Gruska, D. Faivre, A. Linaroudis, J. M. Plitzko, and D. Schuler, An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria, Nature, 440, 110–114, 2006.

    Article  Google Scholar 

  39. Tang, J. T., M. Myers, K. A. Bosnick, and L. E. Brus, Magnetite Fe3O4 nanocrystals: Spectroscopic observation of aqueous oxidation kinetics, J. Phys. Chem. B, 107, 7501–7506, 2003.

    Article  Google Scholar 

  40. Tauxe, L., H. Neal Bertram, and C. Seberino, Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetism, Geochem. Geophys. Geosyst., 3, doi: 10.1029/2001GC000241, 2002.

  41. Thomas-Keprta, K. L., D. A. Bazylinski, J. L. Kirschvink, S. J. Clemett, D. S. McKay, S. J. Wentworth, H. Vali, E. K. Gibson Jr., and C. S. Romanek, Elongated prismatic crystals in AL84001 carbonate globules: Potential Martian Magnetofossils, Geochim. Cosmochim. Acta, 64, 4049–4081, 2000.

    Article  Google Scholar 

  42. Weiss, B. P., S. S. Kim, J. L. Kirschvink, R. E. Kopp, M. Sankaran, A. Kobayashi, and A. Komeili, Magnetic tests for magnetosome chains in Martian meteorite ALH84001, Geochim. Cosmochim. Acta, 101, 8281–8284, 2004.

    Google Scholar 

  43. Winklhofer, M. and G. T. Zimanyi, Extracting the intrinsic switching field distribution in perpendicular media: A comparative analysis, J. Appl. Phys., 99, 08E710, doi:10.1063/1.2176598, 2006.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claire Carvallo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carvallo, C., Hickey, S., Faivre, D. et al. Formation of magnetite in Magnetospirillum gryphiswaldense studied with FORC diagrams. Earth Planet Sp 61, 143–150 (2009). https://doi.org/10.1186/BF03352894

Download citation

Key words

  • Magnetotactic bacteria
  • FORC diagrams
  • magnetite