Skip to main content

Paleomagnetic behavior of volcanic rocks from Isla Socorro, Mexico

Abstract

The direction and magnitude of the geomagnetic field vary both spatially and temporally and undergo significant departures from that of a geocentric axial dipole. In order to properly characterize persistent behaviors, time-averaged field models must be based on the highest quality data. Here we present full-vector paleomagnetic data for volcanic units exposed in the southeast quadrant of the island of Socorro, Mexico. We carried out a joint expedition between the Scripps Institution of Oceanography and the Universidad Nacional Autónoma México to Isla Socorro in January of 2005 during which we collected oriented paleomagnetic samples from 21 sites, representing as many as 10 different volcanic units (the oldest of which is ~540 ka). We subjected over 100 specimens to the most up-to-date paleointensity methods, and included the standard reliability checks. In an earlier study, Bohrson et al. (1996) proposed a series of widespread eruptive events, based on similarities of argon/argon dates. Paleointensity from specimens that conform to the strictest acceptance criteria are available from both the (unoriented) original sample collection and our fully oriented (but as yet undated) new collection. Correlation between the two collections is however problematic. The time-averaged direction from Socorro is consistent with that expected from a geocentric axial dipole, and the time-averaged intensity is 30.0±7.1 μT, equivalent to a virtual axial dipole moment (VADM) of 67.6±16.0 ZAm2.

References

  1. Aitken, M. J., A. L. Allsop, G. D. Bussell, and M. B. Winter, Determination of the intensity of the earth’s magnetic field during archeological times: reliability of the thellier technique, Rev. Geophys., 26, 3–12, 1988.

    Article  Google Scholar 

  2. Batiza, R. and D. A. Vanko, Petrologic evolution of large failed rifts in the eastern pacific: Petrology of volcanic and plutonic rocks from the mathematician ridge area and the guadalupe trough, J. Petrol., 26(3), 564–602, 1985.

    Article  Google Scholar 

  3. Ben Yosef, E., H. Ron, L. Tauxe, A. Agnon, A. Genevey, T. Levy, U. Avner, and M. Najjar, Application of copper slag in geomagnetic archaeointen-sity research, J. Geophys. Res., 2008 (in press).

    Google Scholar 

  4. Bohrson, W. A. and M. R. Reid, Genesis of silicic peralkaline volcanic rocks in an ocean island setting by crustal melting and open-system processes: Socorro island, mexico, J. Petrol., 38(9), 1137–1166, 1997.

    Article  Google Scholar 

  5. Bohrson, W. A., M. R. Reid, A. L. Grunder, M. T. Heizler, T. M. Harrison, and J. Lee, Prolonged history of silicic peralkaline volcanism in the eastern pacific ocean, J. Geophys. Res., 101(B5), 11,457–11,474, 1996.

    Article  Google Scholar 

  6. Bryan, W. B. J., High-silica alkaline lavas of Clarion and Socorro Islands, Mexico—their genesis and regional significance, PhD thesis, University of Wisconsin, 1960.

    Google Scholar 

  7. Coe, R. S., The determination of paleo-intensities of the earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behavior in the thellier’s method, J. Geomag. Geoelectr., 19, 157–178, 1967.

    Article  Google Scholar 

  8. Coe, R. S., S. Gromme, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lavaflows on hawaii and the question of the pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  9. Cox, A., Confidence limits for the precision parameter k, Geophys. J. Roy. Astron. Soc., 17, 545–579, 1969.

    Article  Google Scholar 

  10. Doell, R. R. and A. Cox, The pacific geomagnetic secular vatiation anomaly and the question of lateral uniformity in the lower mantle, in The Nature of the Solid Earth, edited by E. C. Robertson, 245–284, McGraw-Hill, New York, NY, 1972.

    Google Scholar 

  11. Dunlop, D. J. and S. Xu, Theory of partial thermoremanent magnetization in multidomain grains 1. repeated identical barriers to wall motion (single microcoercivity), J. Geophys. Res., 99(B5), 9005–9024, 1994.

    Article  Google Scholar 

  12. Dunlop, D. J. and O. Ozdemir, Rock Magnetism: Fundamentals and Frontiers, Cambridge University Press, New York, 1997.

    Google Scholar 

  13. Farmer, J. D., M. C. Farmer, and R. Berger, Radiocarbon ages of lacustrine deposits in volcanic sequences of the lomas coloradas area, socorro island, mexico, Radiocarbon, 35(2), 253–262, 1993.

    Google Scholar 

  14. Fisher, R. A., Dispersion on a sphere, Proc. Roy. Soc. London A, 217, 294–305, 1953.

    Article  Google Scholar 

  15. Henry, C. D. and J. A. Wolff, Distinguishing strongly rheomorphic tuffs from extensive silicic lavas, Bull. Volcanol., 54, 171–186, 1992.

    Google Scholar 

  16. Johnson, C. L. and P. McFadden, The time-averaged field and paleosecular variation, in Geomagnetism, Treatise on Geophysics, 2007 (in press).

    Google Scholar 

  17. Johnson, C. L., C. G. Constable, and L. Tauxe, Mapping long-term changes in earth’s magnetic field, Science, 300, 2044–2045, 2003.

    Article  Google Scholar 

  18. Kirschvink, J. L., The least-squares line and plane and the analysis of paleomagnetic data, Geophys. J. Roy. Astron. Soc, 62(3), 699–718, 1980.

    Article  Google Scholar 

  19. Laj, C., H. Guillou, N. Szeremeta, and R. S. Coe, Geomagnetic paleosecular variation at hawaii around 3 ma from a sequence of 107 lava flows at kaena point (oahu), Earth Planet. Sci. Lett., 170(4), 365–376, 1999.

    Article  Google Scholar 

  20. Lawrence, K. P., C. G. Constable, and C. L. Johnson, Paleosecular variation and the average geomagnetic field at +/- 20 degrees latitude, Geochem. Geophys. Geosyst.7(7), 2006.

    Google Scholar 

  21. Mammerickx, J., D. F. Naar, and R. L. Tyce, The mathematician paleoplate, J. Geophys. Res., 93(B4), 3025–3040, 1988.

    Article  Google Scholar 

  22. McElhinny, M. W., P. McFadden, and R. T. Merrill, The time-averaged paleomagnetic field 0-5 ma, J. Geophys. Res., 101(B11), 25,007–25,028, 1996.

    Article  Google Scholar 

  23. McFadden, P. and M. W. McElhinny, Variations in the geomagnetic dipole 2: statistical analysis of vdm’s for the past 5 m.y., J. Geomag. Geoelectr., 34, 163–189, 1982.

    Article  Google Scholar 

  24. Quane, S. L. and J. K. Russell, Ranking welding intensity in pyroclastic deposits, Bull. Volcanol., 67, 129–143, 2005.

    Article  Google Scholar 

  25. Richards, A. F., Geology of the islas revillagigedo, mexico, 2. geology and petrography of isla san benedicto, 1966.

    Google Scholar 

  26. Richards, A. F. and B. H. Brattstrom, Bibliography, cartography, discovery, and exploration of the islas revillagigedo, 1959.

    Google Scholar 

  27. Riisager, P. and J. Riisager, Detecting multidomain magnetic grains in thellier palaeointensity experiments, Phys. Earth Planet. Inter., 125, 111–117, 2001.

    Article  Google Scholar 

  28. Schlinger, C. M., D. R. Veblen, and J. G. Rosenbaum, Magnetism and magnetic mineralogy of ash flow tuffs from yucca mountain, nevada, J. Geophys. Res., 96(B4), 6035–6052, 1991.

    Article  Google Scholar 

  29. Schmincke, H.-U., Volcanological aspects of peralkaline silicic welded ash-Mflow tuffs, Bull. Volcanol., 38(2), 594–636, 1974.

    Article  Google Scholar 

  30. Selkin, P. A. and L. Tauxe, Long-term variations in palaeointensity, Roy. Soc., 358, 1065–1088, 2000.

    Google Scholar 

  31. Selkin, P. A., J. S. Gee, and L. Tauxe, Nonlinear thermoremanence acquisition and implications for paleointensity data, Earth Planet. Sci. Lett., 256, 81–89, 2007.

    Article  Google Scholar 

  32. Siebe, C., J.-C. Komorowski, C. Navarro, J. McHone, H. Delgado, H., and A. Cortes, Submarine eruption near socorro island, mexico: Geochemistry and scanning electron microscopy studies of floating scoria and reticulite, J. Volcanol. Geotherm. Res., 68, 239–271, 1995.

    Article  Google Scholar 

  33. Sparks, R. S. J. and G. P. L. Walker, Products of ignimbrite eruptions, Geology, 115-118, 1973.

  34. Taran, Y. A., T. P. Fischer, E. Cienfuegos, and P. Morales, Geochemistry of hydrothermal fluids from an intraplate ocean island: Everman volcano, socorro island, mexico, Chem. Geol., 188(1-2), 51–63, 2002.

    Article  Google Scholar 

  35. Tauxe, L., Paleomagnetic Principles and Practice, Modern Approaches in Geophysics, Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  36. Tauxe, L., P. Gans, and E. A. Mankinen, Paleomagnetism and 40ar/39ar ages from volcanics extruded during the matuyama and brunhes chrons near mcmurdo sound, antarctica, Geochem. Geophys. Geosyst., 5(6), 1–20, 2004.

    Article  Google Scholar 

  37. Tauxe, L. and T. Yamazaki, Paleointensities, in Geomagnetism, 5, 2007 (in press).

  38. Vandamme, D., A new method to determine paleosecular variation, Phys. Earth Planet. Inter., 85, 131–142, 1994.

    Article  Google Scholar 

  39. White, W. M., M. D. M. Tapia, and J.-G. Schilling, The petrology and geochemistry of the azores islands, Contr. Mineral. Petrol., 69(3), 201–213, 1979.

    Article  Google Scholar 

  40. Xu, S. and D. J. Dunlop, Theory of partial thermoremanent magnetization in multidomain grains 2. effect of microcoercivity distribution and comparison with experiment, J. Geophys. Res., 99(B5), 9025–9034, 1994.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elise Sbarbori.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sbarbori, E., Tauxe, L., Goguitchaichvili, A. et al. Paleomagnetic behavior of volcanic rocks from Isla Socorro, Mexico. Earth Planet Sp 61, 191–204 (2009). https://doi.org/10.1186/BF03352899

Download citation

Key words

  • Paleomagnetism
  • paleointensity
  • Socorro
  • Bruhnes
  • IZZI method