Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Paleomagnetic behavior of volcanic rocks from Isla Socorro, Mexico


The direction and magnitude of the geomagnetic field vary both spatially and temporally and undergo significant departures from that of a geocentric axial dipole. In order to properly characterize persistent behaviors, time-averaged field models must be based on the highest quality data. Here we present full-vector paleomagnetic data for volcanic units exposed in the southeast quadrant of the island of Socorro, Mexico. We carried out a joint expedition between the Scripps Institution of Oceanography and the Universidad Nacional Autónoma México to Isla Socorro in January of 2005 during which we collected oriented paleomagnetic samples from 21 sites, representing as many as 10 different volcanic units (the oldest of which is ~540 ka). We subjected over 100 specimens to the most up-to-date paleointensity methods, and included the standard reliability checks. In an earlier study, Bohrson et al. (1996) proposed a series of widespread eruptive events, based on similarities of argon/argon dates. Paleointensity from specimens that conform to the strictest acceptance criteria are available from both the (unoriented) original sample collection and our fully oriented (but as yet undated) new collection. Correlation between the two collections is however problematic. The time-averaged direction from Socorro is consistent with that expected from a geocentric axial dipole, and the time-averaged intensity is 30.0±7.1 μT, equivalent to a virtual axial dipole moment (VADM) of 67.6±16.0 ZAm2.


  1. Aitken, M. J., A. L. Allsop, G. D. Bussell, and M. B. Winter, Determination of the intensity of the earth’s magnetic field during archeological times: reliability of the thellier technique, Rev. Geophys., 26, 3–12, 1988.

  2. Batiza, R. and D. A. Vanko, Petrologic evolution of large failed rifts in the eastern pacific: Petrology of volcanic and plutonic rocks from the mathematician ridge area and the guadalupe trough, J. Petrol., 26(3), 564–602, 1985.

  3. Ben Yosef, E., H. Ron, L. Tauxe, A. Agnon, A. Genevey, T. Levy, U. Avner, and M. Najjar, Application of copper slag in geomagnetic archaeointen-sity research, J. Geophys. Res., 2008 (in press).

  4. Bohrson, W. A. and M. R. Reid, Genesis of silicic peralkaline volcanic rocks in an ocean island setting by crustal melting and open-system processes: Socorro island, mexico, J. Petrol., 38(9), 1137–1166, 1997.

  5. Bohrson, W. A., M. R. Reid, A. L. Grunder, M. T. Heizler, T. M. Harrison, and J. Lee, Prolonged history of silicic peralkaline volcanism in the eastern pacific ocean, J. Geophys. Res., 101(B5), 11,457–11,474, 1996.

  6. Bryan, W. B. J., High-silica alkaline lavas of Clarion and Socorro Islands, Mexico—their genesis and regional significance, PhD thesis, University of Wisconsin, 1960.

  7. Coe, R. S., The determination of paleo-intensities of the earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behavior in the thellier’s method, J. Geomag. Geoelectr., 19, 157–178, 1967.

  8. Coe, R. S., S. Gromme, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lavaflows on hawaii and the question of the pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

  9. Cox, A., Confidence limits for the precision parameter k, Geophys. J. Roy. Astron. Soc., 17, 545–579, 1969.

  10. Doell, R. R. and A. Cox, The pacific geomagnetic secular vatiation anomaly and the question of lateral uniformity in the lower mantle, in The Nature of the Solid Earth, edited by E. C. Robertson, 245–284, McGraw-Hill, New York, NY, 1972.

  11. Dunlop, D. J. and S. Xu, Theory of partial thermoremanent magnetization in multidomain grains 1. repeated identical barriers to wall motion (single microcoercivity), J. Geophys. Res., 99(B5), 9005–9024, 1994.

  12. Dunlop, D. J. and O. Ozdemir, Rock Magnetism: Fundamentals and Frontiers, Cambridge University Press, New York, 1997.

  13. Farmer, J. D., M. C. Farmer, and R. Berger, Radiocarbon ages of lacustrine deposits in volcanic sequences of the lomas coloradas area, socorro island, mexico, Radiocarbon, 35(2), 253–262, 1993.

  14. Fisher, R. A., Dispersion on a sphere, Proc. Roy. Soc. London A, 217, 294–305, 1953.

  15. Henry, C. D. and J. A. Wolff, Distinguishing strongly rheomorphic tuffs from extensive silicic lavas, Bull. Volcanol., 54, 171–186, 1992.

  16. Johnson, C. L. and P. McFadden, The time-averaged field and paleosecular variation, in Geomagnetism, Treatise on Geophysics, 2007 (in press).

  17. Johnson, C. L., C. G. Constable, and L. Tauxe, Mapping long-term changes in earth’s magnetic field, Science, 300, 2044–2045, 2003.

  18. Kirschvink, J. L., The least-squares line and plane and the analysis of paleomagnetic data, Geophys. J. Roy. Astron. Soc, 62(3), 699–718, 1980.

  19. Laj, C., H. Guillou, N. Szeremeta, and R. S. Coe, Geomagnetic paleosecular variation at hawaii around 3 ma from a sequence of 107 lava flows at kaena point (oahu), Earth Planet. Sci. Lett., 170(4), 365–376, 1999.

  20. Lawrence, K. P., C. G. Constable, and C. L. Johnson, Paleosecular variation and the average geomagnetic field at +/- 20 degrees latitude, Geochem. Geophys. Geosyst.7(7), 2006.

  21. Mammerickx, J., D. F. Naar, and R. L. Tyce, The mathematician paleoplate, J. Geophys. Res., 93(B4), 3025–3040, 1988.

  22. McElhinny, M. W., P. McFadden, and R. T. Merrill, The time-averaged paleomagnetic field 0-5 ma, J. Geophys. Res., 101(B11), 25,007–25,028, 1996.

  23. McFadden, P. and M. W. McElhinny, Variations in the geomagnetic dipole 2: statistical analysis of vdm’s for the past 5 m.y., J. Geomag. Geoelectr., 34, 163–189, 1982.

  24. Quane, S. L. and J. K. Russell, Ranking welding intensity in pyroclastic deposits, Bull. Volcanol., 67, 129–143, 2005.

  25. Richards, A. F., Geology of the islas revillagigedo, mexico, 2. geology and petrography of isla san benedicto, 1966.

  26. Richards, A. F. and B. H. Brattstrom, Bibliography, cartography, discovery, and exploration of the islas revillagigedo, 1959.

  27. Riisager, P. and J. Riisager, Detecting multidomain magnetic grains in thellier palaeointensity experiments, Phys. Earth Planet. Inter., 125, 111–117, 2001.

  28. Schlinger, C. M., D. R. Veblen, and J. G. Rosenbaum, Magnetism and magnetic mineralogy of ash flow tuffs from yucca mountain, nevada, J. Geophys. Res., 96(B4), 6035–6052, 1991.

  29. Schmincke, H.-U., Volcanological aspects of peralkaline silicic welded ash-Mflow tuffs, Bull. Volcanol., 38(2), 594–636, 1974.

  30. Selkin, P. A. and L. Tauxe, Long-term variations in palaeointensity, Roy. Soc., 358, 1065–1088, 2000.

  31. Selkin, P. A., J. S. Gee, and L. Tauxe, Nonlinear thermoremanence acquisition and implications for paleointensity data, Earth Planet. Sci. Lett., 256, 81–89, 2007.

  32. Siebe, C., J.-C. Komorowski, C. Navarro, J. McHone, H. Delgado, H., and A. Cortes, Submarine eruption near socorro island, mexico: Geochemistry and scanning electron microscopy studies of floating scoria and reticulite, J. Volcanol. Geotherm. Res., 68, 239–271, 1995.

  33. Sparks, R. S. J. and G. P. L. Walker, Products of ignimbrite eruptions, Geology, 115-118, 1973.

  34. Taran, Y. A., T. P. Fischer, E. Cienfuegos, and P. Morales, Geochemistry of hydrothermal fluids from an intraplate ocean island: Everman volcano, socorro island, mexico, Chem. Geol., 188(1-2), 51–63, 2002.

  35. Tauxe, L., Paleomagnetic Principles and Practice, Modern Approaches in Geophysics, Kluwer Academic Publishers, Dordrecht, 1998.

  36. Tauxe, L., P. Gans, and E. A. Mankinen, Paleomagnetism and 40ar/39ar ages from volcanics extruded during the matuyama and brunhes chrons near mcmurdo sound, antarctica, Geochem. Geophys. Geosyst., 5(6), 1–20, 2004.

  37. Tauxe, L. and T. Yamazaki, Paleointensities, in Geomagnetism, 5, 2007 (in press).

  38. Vandamme, D., A new method to determine paleosecular variation, Phys. Earth Planet. Inter., 85, 131–142, 1994.

  39. White, W. M., M. D. M. Tapia, and J.-G. Schilling, The petrology and geochemistry of the azores islands, Contr. Mineral. Petrol., 69(3), 201–213, 1979.

  40. Xu, S. and D. J. Dunlop, Theory of partial thermoremanent magnetization in multidomain grains 2. effect of microcoercivity distribution and comparison with experiment, J. Geophys. Res., 99(B5), 9025–9034, 1994.

Download references

Author information



Corresponding author

Correspondence to Elise Sbarbori.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sbarbori, E., Tauxe, L., Goguitchaichvili, A. et al. Paleomagnetic behavior of volcanic rocks from Isla Socorro, Mexico. Earth Planet Sp 61, 191–204 (2009).

Download citation

Key words

  • Paleomagnetism
  • paleointensity
  • Socorro
  • Bruhnes
  • IZZI method