Skip to main content

Palaeosecular variation for 0.1-21 Ka from the Okataina Volcanic Centre, New Zealand

Abstract

Studies of palaeodirections and palaeointensities were carried out on mainly rhyolitic lavas and pyroclastics from the Okataina Volcanic Centre, New Zealand, which has erupted during the past 32 kyr. Of the 17 sites studied, 14, spanning the period 0.1-21 Ka yielded good mean palaeodirections, while three carried unstable natural remanent magnetizations. Of 49 specimens from 7 sites, on which Thellier palaeointensity experiments were carried out, 21 specimens gave successful results, yielding 3 site mean palaeointensities for 1886 AD, 5 Ka, and 7.5 Ka. When the new palaeodirections, together with previously reported archaeo and volcanic data, were compared with sedimentary records from New Zealand and eastern Australia for the last 10 kyr, good agreement was obtained in inclination but discrepancies were observed in declination. The new 7.5 Ka and 5 Ka palaeointensities are moderately high and relatively low, respectively, and are concordant with the global trend. The mean palaeointensity obtained for 1886 AD is, 11% higher than the IGRF1900. The difference is scarcely significant, but might indicate a small bias toward high values. Although the sedimentary directional curves show excellent agreement with the prediction from CALS7K, the fit of the palaeointensity data to model values was relatively poor over the wider Pacific region. Further reliable palaeointensity data are needed to solve the discrepancy.

References

  1. Alva-Valdivia, L. M., Comprehensive paleomagnetic study of a succession of Holocene olivine-basalt flow: Xitle Volcano (Mexico) revisited, Earth Planets Space, 57, 839–853, 2005.

    Article  Google Scholar 

  2. Barbetti, M., Measurements of recent geomagnetic secular variation in Southeastren Australia and the question of dipole wobble, Earth Planet. Sci. Lett., 36, 207–218, 1977.

    Article  Google Scholar 

  3. Barbetti, M., Archeomagnetic results from Australia, in Geomagnetism of Baked Clays and Recent Sediments, edited by Creer, K. M., P. Tucholka, and C. E. Barton, 324 pp., Elsevier, Amsterdam, 1983.

    Google Scholar 

  4. Barton, C. E. and M. W. McElhinny, A 10000 yr geomagnetic secular variation record from three Australian maars, Geophys. J. R. Astr. Soc, 67, 465–485, 1981.

    Article  Google Scholar 

  5. Biggin, A. J., M. Perrin, and J. Shaw, A comparison of a quasi-perpendicular method of absolute paleointensity determinatin with other thermal and microwave techniques, Earth Planet. Sci. Lett., 257, 564–581, 2007.

    Article  Google Scholar 

  6. Bőhnel, H., A. J. Biggin, D. Walton, J. Shaw, and J. A. Share, Microwave paleointensities from a recent Mexican lava flow, baked sediments and reheated pottery, Earth Planet. Sci. Lett., 214, 221–236, 2003.

    Article  Google Scholar 

  7. Calvo, M., M. Prévot, M. Perrin, and J. Riisager, Investigating the reasons for the failure of palaeointensity experiments: a study on historical lava flows from Mt. Etna (Italy), Geophys. J. Int., 149, 44–63, 2002.

    Article  Google Scholar 

  8. Coe, R. S., Paleo-intensity of the earth’s magnetic field determined from Tertiary and Quaternary rocks, J. Geophys. Res., 72, 3247–3262, 1967.

    Article  Google Scholar 

  9. Coe, R. S. and C. S. Grommé, A comparison of three methods of determining geomagnetic paleointensities, J. Geomag. Geoelectr, 25, 415–435, 1973.

    Article  Google Scholar 

  10. Coe, R. S., S. Grommé, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  11. Constable, C. G. and M. W. McElhinny, Holocene geomagnetic secular variation records from north-eastern Australian lake sediments, Geophys. J. R. Astr. Soc., 81, 121–130, 1985.

    Article  Google Scholar 

  12. Cox, A., A paleomagnetic study of secular variation in New Zealand, Earth Planet. Sci. Lett., 6, 257–267, 1969.

    Article  Google Scholar 

  13. Creer, K. M., P. Tucholka, and C. E. Barton (eds.), Geomagnetism of Baked Clays and Recent Sediments, 324 pp., Elsevier, Amsterdam, 1983.

    Google Scholar 

  14. Daly, L. and M. Le Goff, An updated and homogeneous world secular variation data base. 1. smoothing of the archaeomagnetic results, Phys. Earth Planet. Inter, 93, 159–190, 1996.

    Article  Google Scholar 

  15. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomag-netites: grain-size and compositional dependence, Phys. Earth Planet. Inter, 13, 260–267, 1977.

    Article  Google Scholar 

  16. Froggatt, P. C. and D. J. Lowe, A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age, New Zealand J. Geol. Geophys., 33, 89–109,1990.

    Article  Google Scholar 

  17. Hoffman, K. A., A method for the display and analysis of transitional paleomagnetic data, J. Geophys. Res., 89, 681–684, 1984.

    Google Scholar 

  18. Hongre, L., G. Hulot, and A. Khokhlov, An analysis of the geomagnetic field over the past 2000 years, Phys. Earth Planet. Inter, 106, 311–335, 1998.

    Article  Google Scholar 

  19. International Association of Geomagnetism, Aeronomy (IAGA), Division V, Working Group VMOD: Geomagnetic Field Modeling, The 10th generation international geomagnetic reference field, Geophys. J. Int., 161, 561–565, 2005.

  20. Kinoshita, H., List of archeomagnetic and paleomagnetic results, J. Geomag. Geoelectr, 22, 507–550, 1970.

    Article  Google Scholar 

  21. Kissel, C. and C. Laj, Improvements in procedure and paleointensity selection criteria (PICRIT-03) for Thellier and Thellier determinations: application to Hawaiian basaltic long cores, Phys. Earth Planet. Inter, 147, 155–169, 2004.

    Article  Google Scholar 

  22. Korte, M. and C. G. Constable, Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochem. Geophys. Geosyst., 6, 2004GC000801, 2005.

    Google Scholar 

  23. Korte, M., A. Genevey, C. G. Constable, U. Frank, and E. Schnepp, Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation, Geochem. Geophys. Geosyst., 6, 2004GC000800, 2005.

    Google Scholar 

  24. Kovacheva, M., Updated archaeomagnetic results from Bulgaria: the last 2000 years, Archaeomagnetic database from Bulgaria: the last 8000 years, Phys. Earth Planet. Inter, 70, 219–223, 1992.

    Article  Google Scholar 

  25. McElhinny, M. W and W. E. Senanayake, Variations in the geomagnetic dipole 1: The past 50000 years, J. Geomag. Geoelectr, 34, 39–51, 1982.

    Article  Google Scholar 

  26. Nagata, T., Y. Arai, and K. Momose, Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 68, 5277–5281, 1963.

    Article  Google Scholar 

  27. Nairn, I. A., Geology of the Okataina Volcanic Centre, Scale 1:50000, Geology of the Okataina Volcanic Centre, Scale 1:50000, pp.156, Lower Hutt, New Zealand, 2002.

    Google Scholar 

  28. Ohno, M. and Y. Hamano, Global Analysis of geomagnetic field: time variation of the dipole moment and the geomagnetic pole in the Holocene, J. Geomag. Geoelectr., 45, 1455–1466, 1993.

    Article  Google Scholar 

  29. Riisager, P., J. Riisager, N. Abrahamsen, and R. Waagstein, Thellier palaeointensity experiments on Faroes flood basalts: technical aspects and geomagnetic implications, Phys. Earth Planet. Inter, 131, 91–100, 2002.

    Article  Google Scholar 

  30. Sternberg, R. S., W. L. Deaver, E. A. Kuter, and A. L. Kiley, A north American archaeomagnetic database, J. Geomag. Geoelectr, 49, 519–522, 1997.

    Article  Google Scholar 

  31. Stuiver, M. and P. J. Reimer, Extended 14C database and revised CALIB radiocarbon calibration program, Radiocarbon, 35, 215–230, 1993.

    Google Scholar 

  32. Tanaka, H. and M. Kono, Preliminary results and reliability of palaeointensity studies on historical and 14C dated Hawaiian lavas, J. Geomag. Geoelectr, 43, 375–388, 1991.

    Article  Google Scholar 

  33. Tanaka, H. and T. Kobayashi, Paleomagnetism of the late Quaternary On-take Volcano, Japan: directions, intensities, and excursions, Earth Planets Space, 55, 189–202, 2003.

    Article  Google Scholar 

  34. Tanaka, H., A. Otsuka, T. Tachibana, and M. Kono, Paleointensities for 10-22 ka from volcanic rocks in Japan and New Zealand, Earth Planet. Sci. Lett., 122, 29–42, 1994.

    Article  Google Scholar 

  35. Tanaka, H., G. M. Turner, B. F. Houghton, T. Tachibana, M. Kono, and M. O. McWilliams, Palaeomagnetism and chronology of the central Taupo Volcanic Zone, New Zealand, Geophys. J. Int., 124, 919–934, 1996.

    Article  Google Scholar 

  36. Tanaka, H., H. Hoshizumi, Y Iwasaki, and H. Shibuya, Applications of paleomagnetism in the volcanic field: A case study of the Unzen Volcano, Japan, Earth Planets Space, 56, 635–647, 2004.

    Article  Google Scholar 

  37. Tanaka, H., R. Kamizaki, and Y Yamamoto, Palaeomagnetism of the Older Ontake Volcano, Japan: contributions to the palaeosecular variation for 750-400 Ka, the lower half of the Brunhes Chron, Geophys. J. Int., 169, 81–90, 2007a.

    Article  Google Scholar 

  38. Tanaka, H., N. Takahashi, and Z. Zheng, Paleointensities from Tertiary basalts, Inner Mongolia and Hebei Province, northeastern China, Earth Planets Space, 59, 747–754, 2007b.

    Article  Google Scholar 

  39. Thellier, E. and O. Thellier, Sur l’intensité du champ magnetique terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

    Google Scholar 

  40. Turner, G. M. and R. Thompson, Lake sediment record of the geomagnetic secular variation in Britain during Holocene times, Geophys. J. R. Astr. Soc, 65, 703–725, 1981.

    Article  Google Scholar 

  41. Turner, G. M. and D. A. Lillis, A palaeomagnetic secular variation record for New Zealand during the past 2500 years, Phys. Earth Planet. Inter., 83, 265–282, 1994.

    Article  Google Scholar 

  42. Valet, J.-P., Time variations in geomagnetic intensity, Rev. Geophys., 41, doi:10.1029/2001RG000104, 2003.

  43. Yamamoto, Y., H. Tsunakawa, and H. Shibuya, Paleointensity study of the Hawaiian 1960 lava: implications for possible causes of erroneously high intensities, Geophys. J. Int., 153, 263–276, 2003.

    Article  Google Scholar 

  44. Yang, S., H. Odah, and J. Shaw, Variations in the geomagnetic dipole moment over the last 12000 years, Geophys. J. Int., 140,158–162,2000.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Tanaka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tanaka, H., Komuro, N. & Turner, G.M. Palaeosecular variation for 0.1-21 Ka from the Okataina Volcanic Centre, New Zealand. Earth Planet Sp 61, 213–225 (2009). https://doi.org/10.1186/BF03352901

Download citation

Key words

  • Palaeosecular variation
  • Okataina
  • rhyolite lava
  • palaeointensity
  • Thellier method