Skip to main content


Palaeosecular variation for 0.1-21 Ka from the Okataina Volcanic Centre, New Zealand

Article metrics


Studies of palaeodirections and palaeointensities were carried out on mainly rhyolitic lavas and pyroclastics from the Okataina Volcanic Centre, New Zealand, which has erupted during the past 32 kyr. Of the 17 sites studied, 14, spanning the period 0.1-21 Ka yielded good mean palaeodirections, while three carried unstable natural remanent magnetizations. Of 49 specimens from 7 sites, on which Thellier palaeointensity experiments were carried out, 21 specimens gave successful results, yielding 3 site mean palaeointensities for 1886 AD, 5 Ka, and 7.5 Ka. When the new palaeodirections, together with previously reported archaeo and volcanic data, were compared with sedimentary records from New Zealand and eastern Australia for the last 10 kyr, good agreement was obtained in inclination but discrepancies were observed in declination. The new 7.5 Ka and 5 Ka palaeointensities are moderately high and relatively low, respectively, and are concordant with the global trend. The mean palaeointensity obtained for 1886 AD is, 11% higher than the IGRF1900. The difference is scarcely significant, but might indicate a small bias toward high values. Although the sedimentary directional curves show excellent agreement with the prediction from CALS7K, the fit of the palaeointensity data to model values was relatively poor over the wider Pacific region. Further reliable palaeointensity data are needed to solve the discrepancy.


  1. Alva-Valdivia, L. M., Comprehensive paleomagnetic study of a succession of Holocene olivine-basalt flow: Xitle Volcano (Mexico) revisited, Earth Planets Space, 57, 839–853, 2005.

  2. Barbetti, M., Measurements of recent geomagnetic secular variation in Southeastren Australia and the question of dipole wobble, Earth Planet. Sci. Lett., 36, 207–218, 1977.

  3. Barbetti, M., Archeomagnetic results from Australia, in Geomagnetism of Baked Clays and Recent Sediments, edited by Creer, K. M., P. Tucholka, and C. E. Barton, 324 pp., Elsevier, Amsterdam, 1983.

  4. Barton, C. E. and M. W. McElhinny, A 10000 yr geomagnetic secular variation record from three Australian maars, Geophys. J. R. Astr. Soc, 67, 465–485, 1981.

  5. Biggin, A. J., M. Perrin, and J. Shaw, A comparison of a quasi-perpendicular method of absolute paleointensity determinatin with other thermal and microwave techniques, Earth Planet. Sci. Lett., 257, 564–581, 2007.

  6. Bőhnel, H., A. J. Biggin, D. Walton, J. Shaw, and J. A. Share, Microwave paleointensities from a recent Mexican lava flow, baked sediments and reheated pottery, Earth Planet. Sci. Lett., 214, 221–236, 2003.

  7. Calvo, M., M. Prévot, M. Perrin, and J. Riisager, Investigating the reasons for the failure of palaeointensity experiments: a study on historical lava flows from Mt. Etna (Italy), Geophys. J. Int., 149, 44–63, 2002.

  8. Coe, R. S., Paleo-intensity of the earth’s magnetic field determined from Tertiary and Quaternary rocks, J. Geophys. Res., 72, 3247–3262, 1967.

  9. Coe, R. S. and C. S. Grommé, A comparison of three methods of determining geomagnetic paleointensities, J. Geomag. Geoelectr, 25, 415–435, 1973.

  10. Coe, R. S., S. Grommé, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

  11. Constable, C. G. and M. W. McElhinny, Holocene geomagnetic secular variation records from north-eastern Australian lake sediments, Geophys. J. R. Astr. Soc., 81, 121–130, 1985.

  12. Cox, A., A paleomagnetic study of secular variation in New Zealand, Earth Planet. Sci. Lett., 6, 257–267, 1969.

  13. Creer, K. M., P. Tucholka, and C. E. Barton (eds.), Geomagnetism of Baked Clays and Recent Sediments, 324 pp., Elsevier, Amsterdam, 1983.

  14. Daly, L. and M. Le Goff, An updated and homogeneous world secular variation data base. 1. smoothing of the archaeomagnetic results, Phys. Earth Planet. Inter, 93, 159–190, 1996.

  15. Day, R., M. Fuller, and V. A. Schmidt, Hysteresis properties of titanomag-netites: grain-size and compositional dependence, Phys. Earth Planet. Inter, 13, 260–267, 1977.

  16. Froggatt, P. C. and D. J. Lowe, A review of late Quaternary silicic and some other tephra formations from New Zealand: their stratigraphy, nomenclature, distribution, volume, and age, New Zealand J. Geol. Geophys., 33, 89–109,1990.

  17. Hoffman, K. A., A method for the display and analysis of transitional paleomagnetic data, J. Geophys. Res., 89, 681–684, 1984.

  18. Hongre, L., G. Hulot, and A. Khokhlov, An analysis of the geomagnetic field over the past 2000 years, Phys. Earth Planet. Inter, 106, 311–335, 1998.

  19. International Association of Geomagnetism, Aeronomy (IAGA), Division V, Working Group VMOD: Geomagnetic Field Modeling, The 10th generation international geomagnetic reference field, Geophys. J. Int., 161, 561–565, 2005.

  20. Kinoshita, H., List of archeomagnetic and paleomagnetic results, J. Geomag. Geoelectr, 22, 507–550, 1970.

  21. Kissel, C. and C. Laj, Improvements in procedure and paleointensity selection criteria (PICRIT-03) for Thellier and Thellier determinations: application to Hawaiian basaltic long cores, Phys. Earth Planet. Inter, 147, 155–169, 2004.

  22. Korte, M. and C. G. Constable, Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochem. Geophys. Geosyst., 6, 2004GC000801, 2005.

  23. Korte, M., A. Genevey, C. G. Constable, U. Frank, and E. Schnepp, Continuous geomagnetic field models for the past 7 millennia: 1. A new global data compilation, Geochem. Geophys. Geosyst., 6, 2004GC000800, 2005.

  24. Kovacheva, M., Updated archaeomagnetic results from Bulgaria: the last 2000 years, Archaeomagnetic database from Bulgaria: the last 8000 years, Phys. Earth Planet. Inter, 70, 219–223, 1992.

  25. McElhinny, M. W and W. E. Senanayake, Variations in the geomagnetic dipole 1: The past 50000 years, J. Geomag. Geoelectr, 34, 39–51, 1982.

  26. Nagata, T., Y. Arai, and K. Momose, Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 68, 5277–5281, 1963.

  27. Nairn, I. A., Geology of the Okataina Volcanic Centre, Scale 1:50000, Geology of the Okataina Volcanic Centre, Scale 1:50000, pp.156, Lower Hutt, New Zealand, 2002.

  28. Ohno, M. and Y. Hamano, Global Analysis of geomagnetic field: time variation of the dipole moment and the geomagnetic pole in the Holocene, J. Geomag. Geoelectr., 45, 1455–1466, 1993.

  29. Riisager, P., J. Riisager, N. Abrahamsen, and R. Waagstein, Thellier palaeointensity experiments on Faroes flood basalts: technical aspects and geomagnetic implications, Phys. Earth Planet. Inter, 131, 91–100, 2002.

  30. Sternberg, R. S., W. L. Deaver, E. A. Kuter, and A. L. Kiley, A north American archaeomagnetic database, J. Geomag. Geoelectr, 49, 519–522, 1997.

  31. Stuiver, M. and P. J. Reimer, Extended 14C database and revised CALIB radiocarbon calibration program, Radiocarbon, 35, 215–230, 1993.

  32. Tanaka, H. and M. Kono, Preliminary results and reliability of palaeointensity studies on historical and 14C dated Hawaiian lavas, J. Geomag. Geoelectr, 43, 375–388, 1991.

  33. Tanaka, H. and T. Kobayashi, Paleomagnetism of the late Quaternary On-take Volcano, Japan: directions, intensities, and excursions, Earth Planets Space, 55, 189–202, 2003.

  34. Tanaka, H., A. Otsuka, T. Tachibana, and M. Kono, Paleointensities for 10-22 ka from volcanic rocks in Japan and New Zealand, Earth Planet. Sci. Lett., 122, 29–42, 1994.

  35. Tanaka, H., G. M. Turner, B. F. Houghton, T. Tachibana, M. Kono, and M. O. McWilliams, Palaeomagnetism and chronology of the central Taupo Volcanic Zone, New Zealand, Geophys. J. Int., 124, 919–934, 1996.

  36. Tanaka, H., H. Hoshizumi, Y Iwasaki, and H. Shibuya, Applications of paleomagnetism in the volcanic field: A case study of the Unzen Volcano, Japan, Earth Planets Space, 56, 635–647, 2004.

  37. Tanaka, H., R. Kamizaki, and Y Yamamoto, Palaeomagnetism of the Older Ontake Volcano, Japan: contributions to the palaeosecular variation for 750-400 Ka, the lower half of the Brunhes Chron, Geophys. J. Int., 169, 81–90, 2007a.

  38. Tanaka, H., N. Takahashi, and Z. Zheng, Paleointensities from Tertiary basalts, Inner Mongolia and Hebei Province, northeastern China, Earth Planets Space, 59, 747–754, 2007b.

  39. Thellier, E. and O. Thellier, Sur l’intensité du champ magnetique terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

  40. Turner, G. M. and R. Thompson, Lake sediment record of the geomagnetic secular variation in Britain during Holocene times, Geophys. J. R. Astr. Soc, 65, 703–725, 1981.

  41. Turner, G. M. and D. A. Lillis, A palaeomagnetic secular variation record for New Zealand during the past 2500 years, Phys. Earth Planet. Inter., 83, 265–282, 1994.

  42. Valet, J.-P., Time variations in geomagnetic intensity, Rev. Geophys., 41, doi:10.1029/2001RG000104, 2003.

  43. Yamamoto, Y., H. Tsunakawa, and H. Shibuya, Paleointensity study of the Hawaiian 1960 lava: implications for possible causes of erroneously high intensities, Geophys. J. Int., 153, 263–276, 2003.

  44. Yang, S., H. Odah, and J. Shaw, Variations in the geomagnetic dipole moment over the last 12000 years, Geophys. J. Int., 140,158–162,2000.

Download references

Author information

Correspondence to Hidefumi Tanaka.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Palaeosecular variation
  • Okataina
  • rhyolite lava
  • palaeointensity
  • Thellier method