Skip to main content

Shear-wave splitting analysis of the upper mantle at the Niigata-Kobe Tectonic Zone with the data of the Joint Seismic Observations at NKTZ

Abstract

We conducted seismic observations with a spatially high density seismic network at the Niigata-Kobe Tectonic Zone, central Japan. The seismic network was used for the analysis of shear-wave splitting. Large lateral variations were found in the polarization direction data: the northern part of the research area yields polarization directions ofNW-SE (Region A), the central part of the research area with the polarization direction of NNE-SSW (Region B), the eastern part of the research area with the polarization direction of NE-SW (Region C), and the southern part of the research area with the polarization direction of E-W (Region D). The polarization directions in Regions B and C could be explained by the preferred orientation of olivine caused by the flow of the subducting Philippine Sea plate. However, the cause of anisotropic region which was related to the heterogeneous structure was also plausible. The polarization direction in Region A might be related to the flow caused by both of the subducting Philippine Sea and Pacific slabs. The polarization direction at the Region D could not be produced by the flow in the wedge and might be related to an anisotropic region beneath the slab. The lateral variation of the polarization direction does not support a model that the NKTZ is a collision region.

References

  • Ando, M., The stress field of the Japanese Island in the last 0.5 million years, Earth Mon. Symp., 7, 541–546, 1979 (in Japanese).

    Google Scholar 

  • Ando, M., Mantle diapers observed in the seismic window, Bull. Volcanol. Soc. Jpn., 31, 45–53, 1986 (in Japanese with English abstract).

    Google Scholar 

  • Ando, M., Y. Ishikawa, and F. Yamazaki, Shear-wave polarization anisotropy in the upper mantle beneath Honshu, Japan, J. Geophys. Res., 88, 5850–5864, 1983.

    Article  Google Scholar 

  • Audoine, E. L., M. K. Savage, and K. R. Gledhill, Anisotropic structure under a back-arc spreading region, the Taupo Volcanic Zone, New Zealand, J. Geophys. Res., 109, B11305, doi:10.1029/2003JB002932, 2004.

    Google Scholar 

  • Bibee, L. D. and G. G. Shor, Jr., Compressional wave anisotropy in the crust and upper mantle, Geophys. Res. Lett., 3, 639–642, 1976.

    Article  Google Scholar 

  • Birch, F., The velocity of compressional waves in rocks to 10 kilobars, 1, J. Geophys. Res., 65, 1083–1102, 1960.

    Article  Google Scholar 

  • Birch, F., The velocity of compressional waves in rocks to 10 kilobars, 2, J. Geophys. Res., 66, 2199–2224, 1961.

    Article  Google Scholar 

  • Crampin, S., Seismic-wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic, Geophys. J. R. Astron. Soc., 53, 467–496, 1978.

    Article  Google Scholar 

  • Crampin, S., A review of wave motion in anisotropic and cracked elasticmedium, Wave Motion, 3, 343–391, 1981.

    Article  Google Scholar 

  • Crampin, S., R. Evans, B. Ucer, M. Doyle, J. P. Davis, G. V. Yegorkina, and A. Miller, Observations of dilatancy-induced polarization anomalies and earthquake prediction, Nature, 286, 847–877, 1980.

    Article  Google Scholar 

  • Fischer, K. M. and X. Yang, Anisotropy in Kuril-Kamchatka subduction zone structure, Geophys. Res. Lett., 21, 5–8, 1994.

    Article  Google Scholar 

  • Fischer, K. M., E. M. Parmentier, A. R. Stine, and E. R. Wolf, Modeling anisotropy and plate-driven flow in the Tonga subduction back arc, J. Geophys. Res., 105, 16,181–16,191, 2000.

    Article  Google Scholar 

  • Francis, T. J. G., Generation of seismic anisotropy in the upper mantle along the mid-oceanic ridges, Nature, 221, 162–165, 1969.

    Article  Google Scholar 

  • Fuchs, K., Seismic anisotropy of the subcrustal lithosphere as evidence for dynamical processes in the upper mantle, Geophys. J. R. Astron. Soc., 49, 167–179, 1977.

    Article  Google Scholar 

  • Fukao, Y., Evidence from core-reflected shear waves anisotropy in the Earth’s mantle, Nature, 309, 695–698, 1984.

    Article  Google Scholar 

  • Gupta, I. N., Premonitory variations in S-wave velocity anisotropy before earthquakes in Nevada, Science, 182, 1129–1132, 1973.

    Article  Google Scholar 

  • Heki, K. and S. Miyazaki, Plate convergence and long-term crustal deformation, Geophys. Res. Lett., 28, 2313–2316, 2001.

    Article  Google Scholar 

  • Hess, H. H., Seismic anisotropy of the uppermost mantle under oceans, Nature, 203, 629–631, 1964.

    Article  Google Scholar 

  • Hirahara, K., A. Ikami, M. Ishida, and T. Mikumo, Three-dimensional Pwave velocity structure beneath central Japan: low-velocity bodies in the wedge portion of the upper mantle above high-velocity subducting plates, Tectonophys., 163, 63–73, 1989.

    Article  Google Scholar 

  • Hiramatsu, Y., M. Ando, T. Tsukuda, and T. Ooida, Three-dimensional image of the anisotropic bodies beneath central Honshu, Japan, Geophys. J. Int., 135, 801–816, 1998.

    Article  Google Scholar 

  • Hsui, A. T. and M. N. Toksoz, The evolution of thermal structures beneath a subduction zone, Tectonophys., 60, 43–60, 1979.

    Article  Google Scholar 

  • Hyodo, M. and K. Hirahara, A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan, Earth Planets Space, 55, 667–675, 2003.

    Article  Google Scholar 

  • Iidaka, T. and K. Obara, Shear-wave polarization anisotropy in the upper mantle from a deep earthquake, Phys. Earth Planet. Inter., 82, 19–25, 1994.

    Article  Google Scholar 

  • Iidaka, T. and K. Obara, Shear-wave polarization anisotropy in the mantle wedge above the subducting Pacific plate, Tectonophys., 249, 53–68, 1995.

    Article  Google Scholar 

  • Iidaka, T., T. Iwasaki, T. Takeda, T. Moriya, I. Kumakawa, E. Kurashimo, T. Kawamura, F. Yamazaki, K. Koike, and G. Aoki, Configuration of subducting Philippine Sea plate and crustal structure in the central Japan region, Geophys. Res. Lett., 30, 23–1–23–4, 2003.

    Article  Google Scholar 

  • Iio, Y., T. Sagiya, Y. Kobayashi, and I. Shiozaki, Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands, Earth Planet. Sci. Lett., 203, 245–253, 2002.

    Article  Google Scholar 

  • Jung, H. and S. Karato, Water-induced fabric transitions in olivine, Science, 293, 1460–1463, 2001.

    Article  Google Scholar 

  • Kaneshima, S., Origin of crustal anisotropy: Shear wave splitting studies in Japan, J. Geophys. Res., 95, 11121–11133, 1990.

    Article  Google Scholar 

  • Katayama, I., H. Jung, and S. Karato, New type of olivine fabric from deformation experiments at modest water content and low stress, Geology, 32, 1045–1048, 2004.

    Article  Google Scholar 

  • Kneller, E. A., P. E. van Karen, S. Karato, and J. Park, B-type olivine fabric in the mantle wedge: Insights from high-resolution Non-Newtonian subduction zone models, Earth Planet. Sci. Lett., 237, 781–797, 2005.

    Article  Google Scholar 

  • Long, M. D. and R. van der Hilst, Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge, Phys. Earth Planet. Inter., 155, 300–312, 2006.

    Article  Google Scholar 

  • Mazzotti, S., X. Le Pichon, and P. Henry, Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS, J. Geophys. Res., 105, 13159–13177, 2000.

    Article  Google Scholar 

  • McKenzie, D., Finite deformation during fluid flow, Geophys. J. R. Astron. Soc., 58, 689–715, 1979.

    Article  Google Scholar 

  • Mendiguren, J. A., Study of mechanisms deep earthquakes in Argentina using non-linear particle motion of S waves, Bull. Seismol. Soc. Am., 59, 1449–1473, 1969.

    Google Scholar 

  • Miyazaki, S. and K. Heki, Crustal velocity field of southwest Japan: Subduction and arc-arc collision, J. Geophys. Res., 106, 4305–4326, 2001.

    Article  Google Scholar 

  • Mizuno, T., H. Ito, Y. Kuwahara, K. Imanishi, and T. Takeda, Spatial variation of shear-wave splitting across an active fault and its implication for stress accumulation mechanism of inland earthquakes: The Atotsugawa fault case, Geopys. Res. Lett., 32, L20305, doi:10.1029/2005GL023875, 2005.

    Article  Google Scholar 

  • Nakajima, J. and A. Hasegawa, Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan, Earth Planet. Sci. Lett., 225, 365–377, 2004.

    Article  Google Scholar 

  • Nakajima, J. and A. Hasegawa, Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its relationship to arc magmatism, J. Geophys. Res., 112, B08306, doi:10.1029/2006JB004770, 2007a.

    Google Scholar 

  • Nakajima, J. and A. Hasegawa, Deep crustal structure along the Niigata- Kobe Tectonic Zone, Japan: Its origin and segmentation, Earth Planets Space, 59, e5–e8, 2007b.

    Article  Google Scholar 

  • Nakajima, J., J. Shimizu, S. Hori, and A. Hasegawa, Shear-wave splitting beneath the southwestern Kurile arc and northeastern Japan arc: A new insight into mantle return flow, Geophys. Res. Lett., 33, L05305, doi:10. 1029/2005GL025023, 2006.

    Google Scholar 

  • Nakamura, R., K. Shimazaki, and T. Hashida, 3-D attenuation structure beneath the Japanese Islands by tomographic inversion of seismic intensity data and predicting JMA seismic intensity distribution in a broad area, Zisin, 47, 21–32, 1994 (in Japanese with English abstract).

    Google Scholar 

  • Nicolas, A. and N. I. Christensen, Formationof anisotropy in upper mantle peridotites—A review, in Composition, Strustutre and Dynamics of the Lithosphere-Asthenosphere System, edited by K. Fucks and C. Froidevaux, Geodyn. Ser., AGU, 16, 111–123, 1987.

    Article  Google Scholar 

  • Nur, A. and G. Simmons, Stress induced anisotropy in rocks: An experimental study, J. Geophys. Res., 74, 6667–6674, 1969.

    Article  Google Scholar 

  • Nuttli, O., The effect of the earth’s surface on the S wave particle motion, Bull. Seismol. Soc. Am., 51, 237–246, 1961.

    Google Scholar 

  • Peselnick, L. and A. Nicolas, Seismic anisotropy in ophiolite peridotite: Application to oceanic upper mantle, J. Geophys. Res., 83, 1227–1235, 1978.

    Article  Google Scholar 

  • Peselnick, L., A. Nicolas, and P. R. Stevenson, Velocity anisotropy in a mantle peridotite from the Iverea zone, application to upper mantle anisotropy, J. Geophys. Res., 79, 1175–1182, 1974.

    Article  Google Scholar 

  • Sagiya, T., S. Miyazaki, and T. Tada, Continuous GPS Array and Presentday crustal deformation of Japan, Pure. Appl. Geophys., 157, 2303–2322, 2000.

    Google Scholar 

  • Sekiguchi, S., Three-dimensional Q structure beneath the Kanto-Tokai district, Tectonophys., 195, 83–104, 1991.

    Article  Google Scholar 

  • Shimazaki, K. and Y. Zhao, Dislocation model for strain accumulation in a plate collision zone, Earth Planet. Sci. Lett., 52, 1091–1094, 2000.

    Google Scholar 

  • Silver, P. G. and W. W. Chan, Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16429–16454, 1991.

    Article  Google Scholar 

  • Sugimura, A. and S. Uyeda, A possible anisotropy of the upper mantle accounting for deep earthquake faulting, Tectonophys., 5, 25–33, 1967.

    Article  Google Scholar 

  • Tatsumi, Y., M. Sakuyama, H. Fukuyama, and I. Kushiro, Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones, J. Geophys. Res., 88, 5815–5825, 1983.

    Article  Google Scholar 

  • The Japanese University Group of the Joint Seismic Observations at NKTZ, The university joint seismic observations at the Niigata-Kobe Tectonic Zone, Bull. Earthq. Res. Inst., Univ. Tokyo, 80, 133–147, 2005.

    Google Scholar 

  • Wessel, P. and W. H. F. Smith, New version of the Generic Mapping Tools Released, Eos Trans. AGU, 76, 329, 1995.

    Article  Google Scholar 

  • Yamasaki, T. and T. Seno, High strain rate zone in central Honshu resulting from the viscosity heterogeneities in the crust and mantle, Earth Planet. Sci. Lett., 232, 13–27, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Takashi Iidaka.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Iidaka, T., Hiramatsu, Y. & The Japanese University Group of the Joint Seismic Observations at NKTZ. Shear-wave splitting analysis of the upper mantle at the Niigata-Kobe Tectonic Zone with the data of the Joint Seismic Observations at NKTZ. Earth Planet Sp 61, 227–235 (2009). https://doi.org/10.1186/BF03352903

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352903

Key words