Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Shear-wave splitting analysis of the upper mantle at the Niigata-Kobe Tectonic Zone with the data of the Joint Seismic Observations at NKTZ

Abstract

We conducted seismic observations with a spatially high density seismic network at the Niigata-Kobe Tectonic Zone, central Japan. The seismic network was used for the analysis of shear-wave splitting. Large lateral variations were found in the polarization direction data: the northern part of the research area yields polarization directions ofNW-SE (Region A), the central part of the research area with the polarization direction of NNE-SSW (Region B), the eastern part of the research area with the polarization direction of NE-SW (Region C), and the southern part of the research area with the polarization direction of E-W (Region D). The polarization directions in Regions B and C could be explained by the preferred orientation of olivine caused by the flow of the subducting Philippine Sea plate. However, the cause of anisotropic region which was related to the heterogeneous structure was also plausible. The polarization direction in Region A might be related to the flow caused by both of the subducting Philippine Sea and Pacific slabs. The polarization direction at the Region D could not be produced by the flow in the wedge and might be related to an anisotropic region beneath the slab. The lateral variation of the polarization direction does not support a model that the NKTZ is a collision region.

References

  1. Ando, M., The stress field of the Japanese Island in the last 0.5 million years, Earth Mon. Symp., 7, 541–546, 1979 (in Japanese).

  2. Ando, M., Mantle diapers observed in the seismic window, Bull. Volcanol. Soc. Jpn., 31, 45–53, 1986 (in Japanese with English abstract).

  3. Ando, M., Y. Ishikawa, and F. Yamazaki, Shear-wave polarization anisotropy in the upper mantle beneath Honshu, Japan, J. Geophys. Res., 88, 5850–5864, 1983.

  4. Audoine, E. L., M. K. Savage, and K. R. Gledhill, Anisotropic structure under a back-arc spreading region, the Taupo Volcanic Zone, New Zealand, J. Geophys. Res., 109, B11305, doi:10.1029/2003JB002932, 2004.

  5. Bibee, L. D. and G. G. Shor, Jr., Compressional wave anisotropy in the crust and upper mantle, Geophys. Res. Lett., 3, 639–642, 1976.

  6. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, 1, J. Geophys. Res., 65, 1083–1102, 1960.

  7. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, 2, J. Geophys. Res., 66, 2199–2224, 1961.

  8. Crampin, S., Seismic-wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic, Geophys. J. R. Astron. Soc., 53, 467–496, 1978.

  9. Crampin, S., A review of wave motion in anisotropic and cracked elasticmedium, Wave Motion, 3, 343–391, 1981.

  10. Crampin, S., R. Evans, B. Ucer, M. Doyle, J. P. Davis, G. V. Yegorkina, and A. Miller, Observations of dilatancy-induced polarization anomalies and earthquake prediction, Nature, 286, 847–877, 1980.

  11. Fischer, K. M. and X. Yang, Anisotropy in Kuril-Kamchatka subduction zone structure, Geophys. Res. Lett., 21, 5–8, 1994.

  12. Fischer, K. M., E. M. Parmentier, A. R. Stine, and E. R. Wolf, Modeling anisotropy and plate-driven flow in the Tonga subduction back arc, J. Geophys. Res., 105, 16,181–16,191, 2000.

  13. Francis, T. J. G., Generation of seismic anisotropy in the upper mantle along the mid-oceanic ridges, Nature, 221, 162–165, 1969.

  14. Fuchs, K., Seismic anisotropy of the subcrustal lithosphere as evidence for dynamical processes in the upper mantle, Geophys. J. R. Astron. Soc., 49, 167–179, 1977.

  15. Fukao, Y., Evidence from core-reflected shear waves anisotropy in the Earth’s mantle, Nature, 309, 695–698, 1984.

  16. Gupta, I. N., Premonitory variations in S-wave velocity anisotropy before earthquakes in Nevada, Science, 182, 1129–1132, 1973.

  17. Heki, K. and S. Miyazaki, Plate convergence and long-term crustal deformation, Geophys. Res. Lett., 28, 2313–2316, 2001.

  18. Hess, H. H., Seismic anisotropy of the uppermost mantle under oceans, Nature, 203, 629–631, 1964.

  19. Hirahara, K., A. Ikami, M. Ishida, and T. Mikumo, Three-dimensional Pwave velocity structure beneath central Japan: low-velocity bodies in the wedge portion of the upper mantle above high-velocity subducting plates, Tectonophys., 163, 63–73, 1989.

  20. Hiramatsu, Y., M. Ando, T. Tsukuda, and T. Ooida, Three-dimensional image of the anisotropic bodies beneath central Honshu, Japan, Geophys. J. Int., 135, 801–816, 1998.

  21. Hsui, A. T. and M. N. Toksoz, The evolution of thermal structures beneath a subduction zone, Tectonophys., 60, 43–60, 1979.

  22. Hyodo, M. and K. Hirahara, A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan, Earth Planets Space, 55, 667–675, 2003.

  23. Iidaka, T. and K. Obara, Shear-wave polarization anisotropy in the upper mantle from a deep earthquake, Phys. Earth Planet. Inter., 82, 19–25, 1994.

  24. Iidaka, T. and K. Obara, Shear-wave polarization anisotropy in the mantle wedge above the subducting Pacific plate, Tectonophys., 249, 53–68, 1995.

  25. Iidaka, T., T. Iwasaki, T. Takeda, T. Moriya, I. Kumakawa, E. Kurashimo, T. Kawamura, F. Yamazaki, K. Koike, and G. Aoki, Configuration of subducting Philippine Sea plate and crustal structure in the central Japan region, Geophys. Res. Lett., 30, 23–1–23–4, 2003.

  26. Iio, Y., T. Sagiya, Y. Kobayashi, and I. Shiozaki, Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands, Earth Planet. Sci. Lett., 203, 245–253, 2002.

  27. Jung, H. and S. Karato, Water-induced fabric transitions in olivine, Science, 293, 1460–1463, 2001.

  28. Kaneshima, S., Origin of crustal anisotropy: Shear wave splitting studies in Japan, J. Geophys. Res., 95, 11121–11133, 1990.

  29. Katayama, I., H. Jung, and S. Karato, New type of olivine fabric from deformation experiments at modest water content and low stress, Geology, 32, 1045–1048, 2004.

  30. Kneller, E. A., P. E. van Karen, S. Karato, and J. Park, B-type olivine fabric in the mantle wedge: Insights from high-resolution Non-Newtonian subduction zone models, Earth Planet. Sci. Lett., 237, 781–797, 2005.

  31. Long, M. D. and R. van der Hilst, Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge, Phys. Earth Planet. Inter., 155, 300–312, 2006.

  32. Mazzotti, S., X. Le Pichon, and P. Henry, Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS, J. Geophys. Res., 105, 13159–13177, 2000.

  33. McKenzie, D., Finite deformation during fluid flow, Geophys. J. R. Astron. Soc., 58, 689–715, 1979.

  34. Mendiguren, J. A., Study of mechanisms deep earthquakes in Argentina using non-linear particle motion of S waves, Bull. Seismol. Soc. Am., 59, 1449–1473, 1969.

  35. Miyazaki, S. and K. Heki, Crustal velocity field of southwest Japan: Subduction and arc-arc collision, J. Geophys. Res., 106, 4305–4326, 2001.

  36. Mizuno, T., H. Ito, Y. Kuwahara, K. Imanishi, and T. Takeda, Spatial variation of shear-wave splitting across an active fault and its implication for stress accumulation mechanism of inland earthquakes: The Atotsugawa fault case, Geopys. Res. Lett., 32, L20305, doi:10.1029/2005GL023875, 2005.

  37. Nakajima, J. and A. Hasegawa, Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan, Earth Planet. Sci. Lett., 225, 365–377, 2004.

  38. Nakajima, J. and A. Hasegawa, Subduction of the Philippine Sea plate beneath southwestern Japan: Slab geometry and its relationship to arc magmatism, J. Geophys. Res., 112, B08306, doi:10.1029/2006JB004770, 2007a.

  39. Nakajima, J. and A. Hasegawa, Deep crustal structure along the Niigata- Kobe Tectonic Zone, Japan: Its origin and segmentation, Earth Planets Space, 59, e5–e8, 2007b.

  40. Nakajima, J., J. Shimizu, S. Hori, and A. Hasegawa, Shear-wave splitting beneath the southwestern Kurile arc and northeastern Japan arc: A new insight into mantle return flow, Geophys. Res. Lett., 33, L05305, doi:10. 1029/2005GL025023, 2006.

  41. Nakamura, R., K. Shimazaki, and T. Hashida, 3-D attenuation structure beneath the Japanese Islands by tomographic inversion of seismic intensity data and predicting JMA seismic intensity distribution in a broad area, Zisin, 47, 21–32, 1994 (in Japanese with English abstract).

  42. Nicolas, A. and N. I. Christensen, Formationof anisotropy in upper mantle peridotites—A review, in Composition, Strustutre and Dynamics of the Lithosphere-Asthenosphere System, edited by K. Fucks and C. Froidevaux, Geodyn. Ser., AGU, 16, 111–123, 1987.

  43. Nur, A. and G. Simmons, Stress induced anisotropy in rocks: An experimental study, J. Geophys. Res., 74, 6667–6674, 1969.

  44. Nuttli, O., The effect of the earth’s surface on the S wave particle motion, Bull. Seismol. Soc. Am., 51, 237–246, 1961.

  45. Peselnick, L. and A. Nicolas, Seismic anisotropy in ophiolite peridotite: Application to oceanic upper mantle, J. Geophys. Res., 83, 1227–1235, 1978.

  46. Peselnick, L., A. Nicolas, and P. R. Stevenson, Velocity anisotropy in a mantle peridotite from the Iverea zone, application to upper mantle anisotropy, J. Geophys. Res., 79, 1175–1182, 1974.

  47. Sagiya, T., S. Miyazaki, and T. Tada, Continuous GPS Array and Presentday crustal deformation of Japan, Pure. Appl. Geophys., 157, 2303–2322, 2000.

  48. Sekiguchi, S., Three-dimensional Q structure beneath the Kanto-Tokai district, Tectonophys., 195, 83–104, 1991.

  49. Shimazaki, K. and Y. Zhao, Dislocation model for strain accumulation in a plate collision zone, Earth Planet. Sci. Lett., 52, 1091–1094, 2000.

  50. Silver, P. G. and W. W. Chan, Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96, 16429–16454, 1991.

  51. Sugimura, A. and S. Uyeda, A possible anisotropy of the upper mantle accounting for deep earthquake faulting, Tectonophys., 5, 25–33, 1967.

  52. Tatsumi, Y., M. Sakuyama, H. Fukuyama, and I. Kushiro, Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones, J. Geophys. Res., 88, 5815–5825, 1983.

  53. The Japanese University Group of the Joint Seismic Observations at NKTZ, The university joint seismic observations at the Niigata-Kobe Tectonic Zone, Bull. Earthq. Res. Inst., Univ. Tokyo, 80, 133–147, 2005.

  54. Wessel, P. and W. H. F. Smith, New version of the Generic Mapping Tools Released, Eos Trans. AGU, 76, 329, 1995.

  55. Yamasaki, T. and T. Seno, High strain rate zone in central Honshu resulting from the viscosity heterogeneities in the crust and mantle, Earth Planet. Sci. Lett., 232, 13–27, 2005.

Download references

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Takashi Iidaka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iidaka, T., Hiramatsu, Y. Shear-wave splitting analysis of the upper mantle at the Niigata-Kobe Tectonic Zone with the data of the Joint Seismic Observations at NKTZ. Earth Planet Sp 61, 227–235 (2009). https://doi.org/10.1186/BF03352903

Download citation

Key words

  • Shear-wave splitting
  • NKTZ
  • anisotropy
  • Atotsugawa fault
  • S wave