Skip to main content

Latitudinal dependence of the solar wind density derived from remote sensing measurements using interplanetary Lyman α emission from 1999 to 2002

Abstract

The interplanetary Lyman α backscattered emission is an effective tool for remote sensing of the global structure of the solar wind proton flux. This paper reports an attempt to derive the latitudinal dependence of the solar wind density by combining the interplanetary Lyman α measurements of the Nozomi spacecraft for the period 1999–2002 with the solar wind speed data derived from interplanetary scintillation measurements. This approach successfully revealed the slow and dense solar wind over the poles during the period of the solar maximum. Data on the polar solar wind density indicate a significant growth from the middle of 2000, and the polar values of solar wind density are close to those of the equatorial values as a result of the disappearance of the coronal hole. A marked density depletion occurred in the middle of 2001, which can be ascribed to the development of fast winds from the polar coronal hole. To evaluate the remote sensing method, we considered solar wind density data from in situ measurements obtained by the Ulysses spacecraft. We conclude that our method basically agrees with in situ measurements, although we found a significant (a factor of 2) difference between these in the middle of 2001.

References

  • Ajello, J. M., W. R. Pryor, C. A. Barth, C. W. Hord, A. I. F. Stewart, K. E. Simmons, and D. T. Hall, Observations of interplanetary Lyman-α with the Galileo Ultraviolet Spectrometer: multiple scattering effects at solar maximum, Astron. Astrophys., 289, 283, 1994.

    Google Scholar 

  • Auchère, F., Effect of the HI Lyα chromospheric flux anisotropy on the total intensity of the resonantly scattered coronal radiation, Astrophys. J., 622, 737, 2005a.

    Article  Google Scholar 

  • Auchère, F., J. W. Cook, J. S. Newmark, D. R. McMullin, R. von Steiger, and M. Witte, The heliospheric HeII 30.4 nm solar flux during cycle 23, Astrophys. J., 625, 1036, 2005b.

    Article  Google Scholar 

  • Baranov, V. B., ISSI Sci Rep., SR-005, 1, 2006.

  • Bertaux, J. L., E. Kyrölä, E. Quémerais, R. Pellinen, R. Lallement, W. Schmidt, M. Berthe, E. Dimarellis, J. P. Goutail, C. Taulemesse, C. Bernaud, G. Leppelmeier, T. Summanen, H. Hannula, H. Huomo, V. Kehla, S. Korpela, K. Leppala, E. Strommer, J. Torsti, K. Viherkanto, J. F. Hochedez, G. Chretiennot, R. Peyroux, and T. Holzer, SWAN: A study of solar wind anisotropies on SOHO with Lyman α sky mapping, Solar Phys., 162, 403, 1995.

    Article  Google Scholar 

  • Bzowski, M., E. Möbius, S. Tarnopolski, V. Izmodenov, and G. Gloeckler, Density of neutral interstellar hydrogen at the termination shock from Ulysses pickup ion observations, Astron. Astrophys., 491, 7, 2008.

    Article  Google Scholar 

  • Cook, J. W., R. Meier, G. E. Brueckner, and M. E. VanHoosier, Latitudinal anisotrophy of the solar far ultraviolet flux: effect on the Lα sky background, Astron. Astrophys., 97, 394, 1981.

    Google Scholar 

  • Cruddace, R., F. Paresce, S. Bowyer, and M. Lampton, On the opacity of the interstellar medium to ultrasoft X-rays and extreme-ultraviolet radiation, Astrophys. J., 187, 497, 1974.

    Article  Google Scholar 

  • Fahr, H. J., Change of interstellar gas parameters in stellar-wind-dominated astrospheres: solar case, Astron. Astrophys., 66, 103, 1978.

    Google Scholar 

  • Fahr, H. J., The interstellar gas flow through the heliospheric interface region, Space Sci. Rev., 78, 199, 1996.

    Article  Google Scholar 

  • Fahr, H. J., T. Kausch, and H. Scherer, A 5-fluid hydrodynamic approach to model the solar system-interstellar medium interaction, Astron. Astrophys., 357, 268, 2000.

    Google Scholar 

  • Fukunishi, H., S. Watanabe, M. Taguchi, and Y. Takahashi, Mars ultraviolet imaging spectrometer experiment on the PLANET-B mission, Adv. Space Res., 23, 1903, 1999.

    Article  Google Scholar 

  • Gloeckler, G. and J. Geiss, Heliospheric and interstellar phenomena deduced from pickup ion observations, Space Sci. Rev., 97, 169, 2001.

    Article  Google Scholar 

  • Izmodenov, V., The Sun and the heliosphere as an integrated system, Kluwer Academic Publishers, 2004.

    Google Scholar 

  • Izmodenov, V. and V. B. Baranov, ISSI Sci. Rep., SR-005, 67, 2006.

    Google Scholar 

  • Izmodenov, V., Y. G. Malama, and M. S. Runderman, Modeling of the outer heliosphere with the realistic solar cycle, Adv. Space Res., 41, 318, 2008.

    Article  Google Scholar 

  • Joselyn, J. A. and T. E. Holzer, The effect of asymmetric solar wind on the Lyman alpha sky background, J. Geophys. Res., 80, 903, 1975.

    Article  Google Scholar 

  • Kojima, M. and T. Kakinuma, Solar cycle evolution of solar wind speed structure between 1973 and 1985 observed with the interplanetary scintillation method, J. Geophys. Res., 92, 7269, 1987.

    Article  Google Scholar 

  • Kojima, M. and T. Kakinuma, Solar cycle dependence of global distribution of solar wind speed, Space Sci. Rev., 53, 173, 1990.

    Article  Google Scholar 

  • Kojima, M., M. Tokumaru, H. Watanabe, and A. Yokobe, Heliospheric tomography using interplanetary scintillation observations 2. Latitude and heliocentric distance dependence of solar wind structure at 0.1–1 AU, J. Geophys. Res., 103, 1981, 1998.

    Article  Google Scholar 

  • Kumar, S. and A. L. Broadfoot, Signatures of solar wind latitudinal structure in interplanetary Lyman-a emissions: MARINER 10 observations, Astrophys. J., 228, 302, 1979.

    Article  Google Scholar 

  • Kyrörä, E., T. Summanen, W. Scmidt, T. Mäkinen, E. Quémerais, J. L. Bertaux, R. Lallement, and J. Costa, Preliminary retrieval of solar wind latitude distribution from solar wind anisotropies/SOHO observations, J. Geophys. Res., 103, 14523, 1998.

    Article  Google Scholar 

  • Lallement, R., J. L. Bertaux, and F. Dalaudier, Interplanetary Lyman α spectral profiles and intensities for both repulsive and attractive solar force fields: predicted absorption pattern by a hydrogen cell, Astron. Astrophys., 150, 21, 1985.

    Google Scholar 

  • Lallement, R., E. Quémerais, J. L. Bertaux, S. Ferron, D. Koutroumpa, and R. Pellinen, Deflection of the interstellar neutral hydrogen flow across the heliospheric interface, Science, 307, 1447, 2005.

    Article  Google Scholar 

  • Lindsay, B. G. and R. F. Stebbings, Charge transfer cross sections for energetic neutral atom data analysis, J. Geophys. Res., 110, A12213, doi:10.1029:2005JA011298, 2005.

  • Marsden, R. G., E. J. Smith, J. F. Cooper, and C. Tranquille, ULYSSES at high heliographic latitudes: an introduction, Astron. Astrophys., 316, 279, 1996.

    Google Scholar 

  • McComas, D. J., H. A. Elliott, and R. von Steiger, Solar wind from highlatitude coronal holes at solar maximum, Geophys. Res. Lett., 29, 1314, 2002.

    Article  Google Scholar 

  • McComas, D. J., H. A. Elliott, N. A. Schwadron, J. T. Gosling, R. M. Skoug, and B. E. Goldstein, The three-dimensional solar wind around solar maximum, Geophys. Res. Lett., 30, 1517, 2003.

    Article  Google Scholar 

  • Müller, H.-R. and G. P. Zank, Heliospheric filtration of interstellar heavy atoms: Sensitivity to hydrogen background, J. Geophys. Res., 109, A07104, 2004.

    Google Scholar 

  • Nakagawa, H., H. Fukunishi, Y. Takahashi, S. Watanabe, M. Taguchi, J. L. Bertaux, R. Lallement, and E. Quémerais, Solar cycle dependence of interplanetary Lyman a emission and solar wind anisotropies derived from NOZOMI/UVS and SOHO/SWAN observations, J. Geophys. Res., 108, 8035, 2003.

    Article  Google Scholar 

  • Phillips, J. L., S. J. Bame, A. Barnes, B. L. Barraclough, W. C. Feldman, B. E. Goldstein, J. T. Gosling, G. W. Hoogeveen, D. J. McComas, M. Neugebauer, and S. T. Suess, Ulysses solar wind plasma observations from pole to pole, Geophys. Res. Lett., 22, 3301, 1995.

    Article  Google Scholar 

  • Pogorelov, N. V., G. P. Zank, and T. Ogino, Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. 1. Magnetohydrodynamic model: Interstellar perspective, Astrophys. J., 614, 1007, 2004.

    Article  Google Scholar 

  • Pryor, W. R., J. M. Ajello, C. A. Barth, C. W. Hord, A. I. F. Stewart, K. E. Simmons, W. E. McClintock, B. R. Sandel, and D. E. Shemansky, The Galileo and Pioneer Venus ultraviolet spectrometer experiments: solar Lyman-α observations, Astrophys. J., 394, 363, 1992.

    Article  Google Scholar 

  • Pryor, W. R., I. Stewart, K. Simmons, M. Witte, J. Ajello, K. Toskiba, D. McComas, and D. Hall, Remote sensing of H from Ulysses and Galileo, Space Sci. Rev., 97, 393, 2001.

    Article  Google Scholar 

  • Pryor, W. R., J. M. Ajello, D. J. McComas, M. Witte, and W. K. Tobiska, Hydrogen atom lifetimes in the three-dimensional heliosphere over the solar cycle, J. Geophys. Res., 108, 8034, 2003.

    Article  Google Scholar 

  • Quémerais, E., Angle dependent partial frequency redistribution in the interplanetary medium at Lyman α, Astron. Astrophys., 358, 353, 2000.

    Google Scholar 

  • Quémerais, E., R. Lallement, S. Ferron, D. Koutroumpa, J. L. Bertaux, E. Kyrölä, and W. Schmidt, Interplanetary hydrogen absolute ionization rates: Retrieving the solar wind mass flux latitude and cycle dependence with SWAN/SOHO maps, J. Geophys. Res., 111, A09114, doi:10.1029/2006JA011711, 2006.

  • Rucinski, D. and M. Bzowski, Modulation of interplanetary hydrogen density distribution during the solar cycle, Astron. Asrophys., 296, 248, 1995.

    Google Scholar 

  • Summanen, T., The effect of the time and latitude-dependent solar ionization rate on the measured Lyman α-intensity, Astron. Astrophys., 314, 663, 1996.

    Google Scholar 

  • Summanen, T., The solar ionization rate of the interplanetary hydrogen as a function of a heliomagnetic latitude: a new model for the interplanetary Lyman alpha studies, Astrophys. Space Sci., 274, 143, 2000.

    Article  Google Scholar 

  • Taguchi, M., H. Fukunishi, S. Watanabe, S. Okano, Y. Takahashi, and T. D. Kawaahara, Ultraviolet imaging spectrometer (UVS) experiment on board the NOZOMI spacecraft: Instrumentation and initial results, Earth Planets Space, 52, 49, 2000.

    Article  Google Scholar 

  • Thomas, G. E., The interstellar wind and its influence on the interplanetary environment, Ann. Rev. Earth Planet. Sci., 6, 173, 1978.

    Article  Google Scholar 

  • Tobiska, W. K., T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, and O. R. White, The SOLAR2000 empirical solarirradiance model and forecast tool, J. Atmos. Sol.-Terr. Phys., 81, 1247, 2000.

    Google Scholar 

  • Wu, F.M. and D. L. Judge, Temperature and flow velocity of the interplanetary gases along solar radii, Astrophys. J., 231, 594, 1979.

    Article  Google Scholar 

  • Zank, G. P., Interaction of the solar wind with the local interstellar medium: a theoretical perspective, Space Sci. Rev., 89, 413, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromu Nakagawa.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Nakagawa, H., Fukunishi, H., Watanabe, S. et al. Latitudinal dependence of the solar wind density derived from remote sensing measurements using interplanetary Lyman α emission from 1999 to 2002. Earth Planet Sp 61, 373–382 (2009). https://doi.org/10.1186/BF03352918

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352918

Key words

  • Sun
  • solar wind
  • interplanetary neutral hydrogen
  • heliosphere
  • Nozomi