Skip to main content

Volume 61 Supplement 5

Special Issue: Flare-Substorm/Space Weather Topics

A two-step scenario for both solar flares and magnetospheric substorms: Short duration energy storage

Abstract

The basic observations for magnetic storms and substorms at Earth and for flares at the Sun are reviewed for background. We present a common scenario of double magnetic reconnection for both substorms and flares based on previous interplanetary observations and substorm-triggering results. Central to the scenario is that the first magnetic reconnection phase is the source of energy loading for possible substorms and flares. The energy placed in the magnetotail or magnetosphere/at the sun lasts for only a short duration of time however. The energy gets dissipates away rapidly (in some less dramatic form). This scenario predicts that if the initial reconnection process is sufficiently intense and rapid, concomitant substorms and flares occur soon thereafter. If the energy input is less rapid, there may be lengthy delays for the onset of substorms and flares. If external influences (shocks, etc.) occur during the latter energy buildup, the “trigger” will cause a sudden release of this energy. The model also explains reconnection without subsequent substorms and flares. The model addresses the question why strong triggering events are sometimes ineffective.

References

  • Akasofu, S.-I., The development of the auroral substorm, Planet. Space Sci., 12, 273, 1964.

    Article  Google Scholar 

  • Akasofu, S.-I. and S. Chapman, Solar Terr. Phys., Clarendon, Press, Oxford, 1972.

    Google Scholar 

  • Antiochos, S. K., C. R. DeVore, and J. A. Klimchuk, A model for solar coronal mass ejections, Astrophys. J., 510, 485, 1999.

    Article  Google Scholar 

  • Araki, T., A physical model of geomagnetic sudden commencement, in Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, Geophy. Mon. 81, AGU, Wash. D.C., 183, 1994.

    Chapter  Google Scholar 

  • Asai, A. et al., Difference between spatial distributions of the Hα kernels and hard X-Ray sources in a solar flare, Astrophys. J., 578, L91, 2002.

    Article  Google Scholar 

  • Asai, A. et al., Downflow motions associated with impulsive nonthermal emissions observed in the 2002 July 23 solar flare, Astrophys. J., 605, L77, 2004.

    Article  Google Scholar 

  • Aschwanden, M. J. et al., The scaling law between electron time-of-flight distances and loop lengths in solar flares, Astrophys. J., 470, 1198, 1996.

    Article  Google Scholar 

  • Aulanier, G., E. E. DeLuca, S. K. Antiochos, R. A. McMullen, and L. Golub, The topology and evolution of the Bastille Day Flare, Astrophys. J., 540, 1126, 2000.

    Article  Google Scholar 

  • Carlson, C. W., R. F. Pfaff, and J. G. Watzin, The Fast auroral snapshot (FAST) mission, Geophys. Res. Lett., 25, 2013, 1998.

    Article  Google Scholar 

  • Carrington, R. C., Description of a singular appearance seen in the Sun on September 1, 1859, Mon. Not. R. Astron. Soc., XX, 13, 1860.

    Google Scholar 

  • Chen, P. F. and K. Shibata, An emerging flux trigger mechanism for coronal mass ejections, Astrophys. J., 545, 524, 2000.

    Article  Google Scholar 

  • Dungey, J. W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47, 1961.

    Article  Google Scholar 

  • Echer, E., W. D. Gonzalez, B. T. Tsurutani, and A. L. C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, doi:10.1029/2007JA012744, 2008.

    Google Scholar 

  • Evans, D., The observation of a near mono-energetic flux of auroral electrons, J. Geophys. Res., 73, 2315, 1968.

    Article  Google Scholar 

  • Fletcher, L. and H. Hudson, The magnetic structure and generation of EUV flare ribbons, Sol. Phys., 204, 69, 2001.

    Article  Google Scholar 

  • Fletcher, L. and H. Hudson, Spectral and spatial variations of flare hard X-ray footpoints, Sol. Phys., 210, 307, 2002.

    Article  Google Scholar 

  • Forbes, T. G. and L. W. Acton, Reconnection and field line shrinkage in solar flares, Astrophys. J., 459, 330, 1996.

    Article  Google Scholar 

  • Freeman, M. P. and S. K. Morley, A minimal substorm model that explains the observed statistical distribution of times between substorms, Geophys. Res. Lett., 31, L12807, doi:10.1029/2004GL019989, 2004.

    Article  Google Scholar 

  • Gonzalez, W. D. and B. T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT), Planet. Space Sci., 35, 1101, 1987.

    Article  Google Scholar 

  • Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771, 1994.

    Article  Google Scholar 

  • Gonzalez, W. D., E. Echer, A. L. C. Gonzalez, and B. T. Tsurutani, Interplanetary origin of intense geomagnetic storms (Dst < −100 nT) during solar cycle 23, Geophys. Res. Lett., 34, L06101, doi:10.1029/2006GL028879, 2007.

    Article  Google Scholar 

  • Hagyard, M. J., D. Teuber, E. A. West, E. Tandberg-Hanssen, W. Henze Jr., J. M. Beckers, M. Bruner, C. L. Hyder, and B. E. Woodgate, Vertical gradients of sunspot magnetic fields, Sol. Phys., 84, 13, 1983.

    Article  Google Scholar 

  • Hagyard, M. J., J. B. Smith, Jr., D. Teuber, and E. A. West, A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring, Sol. Phys., 91, 115, 1984.

    Article  Google Scholar 

  • Heppner, J. P., Note on the occurrence of world-wide SSCs during the onset of negative bays at College, Alaska, J. Geophys. Res., 60, 29, 1955.

    Article  Google Scholar 

  • Hodgson, R., On a curious appearance seen in the Sun, Mon. Not. R. Astron. Soc., XX, 15, 1860.

    Google Scholar 

  • Hudson, H. S., Thermal plasmas in the solar corona: The YOHKOH soft x-ray observations, in Proc. Kofu Meeting, edited by S. Enome and T. Hirayama, Nobeyama Radio Observatory, 1, 1994.

    Google Scholar 

  • Kawasaki, K., S.-I. Akasofu, F. Yasuhara, and C.-I. Meng, Storm sudden commencements and polar magnetic substorms, J. Geophys. Res., 76, 6781, 1971.

    Article  Google Scholar 

  • Kennel, C. F., J. P. Edmiston, and T. Hada, A quarter century of collision-less shock research, in Collisionless Shocks in the Heliosphere: A Tutorial Review, edited by R. G. Stone and B. T. Tsurutani, AGU, Wash. D.C., 34, 1, 1985.

    Google Scholar 

  • Kokubun, S., R. L. McPherron, and C. T. Russell, Triggering of substorms by solar wind discontinuities, J. Geophys. Res., 76, 6781, 1977.

    Google Scholar 

  • Kusano, K., T. Maeshiro, T. Yokoyama, and T. Sakurai, Measurement of magnetic helicity injection and free energy loading into the solar corona, Astrophys. J., 577, 501, 2002.

    Article  Google Scholar 

  • Kusano, K., T. Maeshiro, T. Yokoyama, and T. Sakurai, The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear, Astrophys. J., 610, 537, 2004.

    Article  Google Scholar 

  • Lin, R. P., S. Krucker, G. J. Hurford, D. M. Smith, H. S. Hudson, G. D. Holman, R. A. Schwartz, B. R. Dennis, G. H. Share, R. J. Murphy, A. G. Emslie, C. Johns-Krull, and N. Vilmer, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare, Astrophys. J., 595, L69, 2003.

    Article  Google Scholar 

  • Lyons, L. R., G. T. Blanchard, J. C. Samson, R. P. Lepping, T. Yamamoto, and T. Moretto, Coordinated observations demonstrating external sub-storm triggering, J. Geophys. Res., 102, 27,039, 1997.

    Article  Google Scholar 

  • Masuda, S., T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature, 371(6497), 495, 1994.

    Article  Google Scholar 

  • McKenzie, D. E. and H. S. Hudson, X-ray observations of motions and structure above a solar flare arcade, Astrophys. J., 519, L93, 1999.

    Article  Google Scholar 

  • Meng, C.-I., B. T. Tsurutani, K. Kawasaki, and S.-I. Akasofu, Cross-correlation analysis of the AE index and the interplanetary magnetic field Bz component, J. Geophys. Res., 78, 617, 1973.

    Article  Google Scholar 

  • Moore, R. L. and G. Roumeliotis, Triggering of eruptive flares—Destabilization of the preflare magnetic field configuration, in Eruptive Solar Flares, edited by Z. Svestka, B. V. Jackson and M. E. Machado, Springer-Verlag, Berlin, 69, 1992.

    Chapter  Google Scholar 

  • Moore, R. L., A. C. Sterling, H. S. Hudson, and J. R. Lemen, Onset of the magnetic explosion in solar flares and coronal mass ejections, Astrophys. J., 552, 833, 2001.

    Article  Google Scholar 

  • Neidig, D. F., High resolution observations of fibril changes in a small flare, Sol. Phys., 61, 121, 1979.

    Article  Google Scholar 

  • Ohyama, M. and K. Shibata, X-ray plasma ejection associated with an impulsive flare on 1992 October 5: Physical conditions of X-ray plasma ejection, Astrophys. J., 499, 934, 1998.

    Article  Google Scholar 

  • Sakao, T., Characteristics of solar flare hard X-ray sources as revealed with the Hard X-ray Telescope aboard the Yohkoh satellite, PhD Thesis, University of Tokyo, 1994.

    Google Scholar 

  • Schrijver, C. J., M. L. DeRosa, T. Metcalf, G. Barnes, B. Lites, T. Tarbell, J. McTiernan, G. Valori, T. Wiegelmann, M. S. Wheatland, T. Amari, G. Aulanier, P. Démoulin, M. Fuhrmann, K. Kusano, S. Régnier, and J. K. Thalmann, Nonlinear force-free modeling of a solar active region around the time of a major flare and coronal mass ejection, Astrophys. J., 675, 1673, 2008.

    Google Scholar 

  • Shibata, K., Evidence of magnetic reconnection in solar flares and a unified model of flares, Astrophys. Space Sci., 264, 129, 1999.

    Article  Google Scholar 

  • Shibata, K., in Proc. IAU Symp. No. 226, Coronal and Stellar mass Ejections, 241, 2005.

    Google Scholar 

  • Shibata, K., S. Masuda, M. Shimojo et al., Hot plasma ejections associated with compact-loop solar flares, Astrophys. J. Lett., 451, L83, 1995.

    Article  Google Scholar 

  • Shibata, K., T. Nakamura, T. Matsumoto et al., Chromospheric anemone jets as evidence of ubiquitous magnetic reconnection, Science, 318, 1591, 2007.

    Article  Google Scholar 

  • Sui, L. and G. D. Holman, Evidence for the formation of a large-scale current sheet in a solar flare, Astrophys. J., 596, L251, 2003.

    Article  Google Scholar 

  • Svestka, Z., Solar Flares, Reidal, Dordrecht, 1976.

    Book  Google Scholar 

  • Tajima, T. and K. Shibata, Plasma astrophysics, in Frontiers in Physics, edited by David Pines, Perseus Publishing, Cambridge, Massachusetts, pp. 494, 1997.

    Google Scholar 

  • Terasawa, T., K. Shibata, and M. Scholer, Comparative study of flares and substorms, Adv. Space Res., 26(3), 573, 2000.

    Article  Google Scholar 

  • Tsuneta, S., H. Hara, T. Shimizu, L. W. Acton, K. T. Strong, H. S. Hudson, and Y. Ogawara, Observation of a solar flare at the limb with the YOHKOH Soft X-ray Telescope, PASJ, 44, L63, 1992.

    Google Scholar 

  • Tsurutani, B. T. and C.-I. Meng, Interplanetary magnetic field variations and substorm activity, J. Geophys. Res., 77, 2964, 1972.

    Article  Google Scholar 

  • Tsurutani, B. T. and W. D. Gonzalez, Calculations of the efficiency of “viscous interaction” between the solar wind and the magnetosphere during intense northward IMF events, Geophys. Res. Lett., 22, 663, 1995.

    Article  Google Scholar 

  • Tsurutani, B. T. and X.-Y. Zhou, Interplanetary shock triggering of sub-storms: WIND and POLAR, Adv. Space Res., 31, 1063, 2003.

    Article  Google Scholar 

  • Tsurutani, B. T., B. E. Goldstein, M. E. Burton, and D. E. Jones, A review of the ISEE-3 GEOTAIL magnetic field results, Planet. Space Sci., 34(10), 931, 1986.

    Article  Google Scholar 

  • Wang, J. and Z. Shi, The flare-associated magnetic changes in an active region. II - Flux emergence and cancellation, Sol. Phys., 143, 119, 1993.

    Article  Google Scholar 

  • Yokoyama, T., K. Akita, T. Morimoto, K. Inoue, and J. Newmark, Clear evidence of reconnection inflow of a solar flare, Astrophys. J. Lett., 436, L197, 2001.

    Article  Google Scholar 

  • Zhang, Y. Z., J. X. Wang, and Y. Q. Hu, Two-current-sheet reconnection model of interdependent flare and coronal mass ejection, Astrophys. J., 641, 572, 2006.

    Article  Google Scholar 

  • Zirin, H. and K. Tanaka, The flare of August 1972, Sol. Phys., 32, 173, 1973.

    Article  Google Scholar 

  • Zhou, X.-Y. and B. T. Tsurutani, Interplanetary shock triggering of night-side geomagnetic activity: Substorms, pseudobreakups and quiescent events, J. Geophys. Res., 106, 18,957, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce T. Tsurutani.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Tsurutani, B.T., Shibata, K., Akasofu, SI. et al. A two-step scenario for both solar flares and magnetospheric substorms: Short duration energy storage. Earth Planet Sp 61, 555–559 (2009). https://doi.org/10.1186/BF03352921

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352921

Key words

  • Solar flares
  • substorms
  • magnetic storms
  • magnetic reconnection