Special Issue: Flare-Substorm/Space Weather Topics
- Letter
- Open access
- Published:
A two-step scenario for both solar flares and magnetospheric substorms: Short duration energy storage
Earth, Planets and Space volume 61, pages 555–559 (2009)
Abstract
The basic observations for magnetic storms and substorms at Earth and for flares at the Sun are reviewed for background. We present a common scenario of double magnetic reconnection for both substorms and flares based on previous interplanetary observations and substorm-triggering results. Central to the scenario is that the first magnetic reconnection phase is the source of energy loading for possible substorms and flares. The energy placed in the magnetotail or magnetosphere/at the sun lasts for only a short duration of time however. The energy gets dissipates away rapidly (in some less dramatic form). This scenario predicts that if the initial reconnection process is sufficiently intense and rapid, concomitant substorms and flares occur soon thereafter. If the energy input is less rapid, there may be lengthy delays for the onset of substorms and flares. If external influences (shocks, etc.) occur during the latter energy buildup, the “trigger” will cause a sudden release of this energy. The model also explains reconnection without subsequent substorms and flares. The model addresses the question why strong triggering events are sometimes ineffective.
References
Akasofu, S.-I., The development of the auroral substorm, Planet. Space Sci., 12, 273, 1964.
Akasofu, S.-I. and S. Chapman, Solar Terr. Phys., Clarendon, Press, Oxford, 1972.
Antiochos, S. K., C. R. DeVore, and J. A. Klimchuk, A model for solar coronal mass ejections, Astrophys. J., 510, 485, 1999.
Araki, T., A physical model of geomagnetic sudden commencement, in Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, Geophy. Mon. 81, AGU, Wash. D.C., 183, 1994.
Asai, A. et al., Difference between spatial distributions of the Hα kernels and hard X-Ray sources in a solar flare, Astrophys. J., 578, L91, 2002.
Asai, A. et al., Downflow motions associated with impulsive nonthermal emissions observed in the 2002 July 23 solar flare, Astrophys. J., 605, L77, 2004.
Aschwanden, M. J. et al., The scaling law between electron time-of-flight distances and loop lengths in solar flares, Astrophys. J., 470, 1198, 1996.
Aulanier, G., E. E. DeLuca, S. K. Antiochos, R. A. McMullen, and L. Golub, The topology and evolution of the Bastille Day Flare, Astrophys. J., 540, 1126, 2000.
Carlson, C. W., R. F. Pfaff, and J. G. Watzin, The Fast auroral snapshot (FAST) mission, Geophys. Res. Lett., 25, 2013, 1998.
Carrington, R. C., Description of a singular appearance seen in the Sun on September 1, 1859, Mon. Not. R. Astron. Soc., XX, 13, 1860.
Chen, P. F. and K. Shibata, An emerging flux trigger mechanism for coronal mass ejections, Astrophys. J., 545, 524, 2000.
Dungey, J. W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47, 1961.
Echer, E., W. D. Gonzalez, B. T. Tsurutani, and A. L. C. Gonzalez, Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006), J. Geophys. Res., 113, A05221, doi:10.1029/2007JA012744, 2008.
Evans, D., The observation of a near mono-energetic flux of auroral electrons, J. Geophys. Res., 73, 2315, 1968.
Fletcher, L. and H. Hudson, The magnetic structure and generation of EUV flare ribbons, Sol. Phys., 204, 69, 2001.
Fletcher, L. and H. Hudson, Spectral and spatial variations of flare hard X-ray footpoints, Sol. Phys., 210, 307, 2002.
Forbes, T. G. and L. W. Acton, Reconnection and field line shrinkage in solar flares, Astrophys. J., 459, 330, 1996.
Freeman, M. P. and S. K. Morley, A minimal substorm model that explains the observed statistical distribution of times between substorms, Geophys. Res. Lett., 31, L12807, doi:10.1029/2004GL019989, 2004.
Gonzalez, W. D. and B. T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst < −100 nT), Planet. Space Sci., 35, 1101, 1987.
Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas, What is a geomagnetic storm?, J. Geophys. Res., 99, 5771, 1994.
Gonzalez, W. D., E. Echer, A. L. C. Gonzalez, and B. T. Tsurutani, Interplanetary origin of intense geomagnetic storms (Dst < −100 nT) during solar cycle 23, Geophys. Res. Lett., 34, L06101, doi:10.1029/2006GL028879, 2007.
Hagyard, M. J., D. Teuber, E. A. West, E. Tandberg-Hanssen, W. Henze Jr., J. M. Beckers, M. Bruner, C. L. Hyder, and B. E. Woodgate, Vertical gradients of sunspot magnetic fields, Sol. Phys., 84, 13, 1983.
Hagyard, M. J., J. B. Smith, Jr., D. Teuber, and E. A. West, A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring, Sol. Phys., 91, 115, 1984.
Heppner, J. P., Note on the occurrence of world-wide SSCs during the onset of negative bays at College, Alaska, J. Geophys. Res., 60, 29, 1955.
Hodgson, R., On a curious appearance seen in the Sun, Mon. Not. R. Astron. Soc., XX, 15, 1860.
Hudson, H. S., Thermal plasmas in the solar corona: The YOHKOH soft x-ray observations, in Proc. Kofu Meeting, edited by S. Enome and T. Hirayama, Nobeyama Radio Observatory, 1, 1994.
Kawasaki, K., S.-I. Akasofu, F. Yasuhara, and C.-I. Meng, Storm sudden commencements and polar magnetic substorms, J. Geophys. Res., 76, 6781, 1971.
Kennel, C. F., J. P. Edmiston, and T. Hada, A quarter century of collision-less shock research, in Collisionless Shocks in the Heliosphere: A Tutorial Review, edited by R. G. Stone and B. T. Tsurutani, AGU, Wash. D.C., 34, 1, 1985.
Kokubun, S., R. L. McPherron, and C. T. Russell, Triggering of substorms by solar wind discontinuities, J. Geophys. Res., 76, 6781, 1977.
Kusano, K., T. Maeshiro, T. Yokoyama, and T. Sakurai, Measurement of magnetic helicity injection and free energy loading into the solar corona, Astrophys. J., 577, 501, 2002.
Kusano, K., T. Maeshiro, T. Yokoyama, and T. Sakurai, The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear, Astrophys. J., 610, 537, 2004.
Lin, R. P., S. Krucker, G. J. Hurford, D. M. Smith, H. S. Hudson, G. D. Holman, R. A. Schwartz, B. R. Dennis, G. H. Share, R. J. Murphy, A. G. Emslie, C. Johns-Krull, and N. Vilmer, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare, Astrophys. J., 595, L69, 2003.
Lyons, L. R., G. T. Blanchard, J. C. Samson, R. P. Lepping, T. Yamamoto, and T. Moretto, Coordinated observations demonstrating external sub-storm triggering, J. Geophys. Res., 102, 27,039, 1997.
Masuda, S., T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara, A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature, 371(6497), 495, 1994.
McKenzie, D. E. and H. S. Hudson, X-ray observations of motions and structure above a solar flare arcade, Astrophys. J., 519, L93, 1999.
Meng, C.-I., B. T. Tsurutani, K. Kawasaki, and S.-I. Akasofu, Cross-correlation analysis of the AE index and the interplanetary magnetic field Bz component, J. Geophys. Res., 78, 617, 1973.
Moore, R. L. and G. Roumeliotis, Triggering of eruptive flares—Destabilization of the preflare magnetic field configuration, in Eruptive Solar Flares, edited by Z. Svestka, B. V. Jackson and M. E. Machado, Springer-Verlag, Berlin, 69, 1992.
Moore, R. L., A. C. Sterling, H. S. Hudson, and J. R. Lemen, Onset of the magnetic explosion in solar flares and coronal mass ejections, Astrophys. J., 552, 833, 2001.
Neidig, D. F., High resolution observations of fibril changes in a small flare, Sol. Phys., 61, 121, 1979.
Ohyama, M. and K. Shibata, X-ray plasma ejection associated with an impulsive flare on 1992 October 5: Physical conditions of X-ray plasma ejection, Astrophys. J., 499, 934, 1998.
Sakao, T., Characteristics of solar flare hard X-ray sources as revealed with the Hard X-ray Telescope aboard the Yohkoh satellite, PhD Thesis, University of Tokyo, 1994.
Schrijver, C. J., M. L. DeRosa, T. Metcalf, G. Barnes, B. Lites, T. Tarbell, J. McTiernan, G. Valori, T. Wiegelmann, M. S. Wheatland, T. Amari, G. Aulanier, P. Démoulin, M. Fuhrmann, K. Kusano, S. Régnier, and J. K. Thalmann, Nonlinear force-free modeling of a solar active region around the time of a major flare and coronal mass ejection, Astrophys. J., 675, 1673, 2008.
Shibata, K., Evidence of magnetic reconnection in solar flares and a unified model of flares, Astrophys. Space Sci., 264, 129, 1999.
Shibata, K., in Proc. IAU Symp. No. 226, Coronal and Stellar mass Ejections, 241, 2005.
Shibata, K., S. Masuda, M. Shimojo et al., Hot plasma ejections associated with compact-loop solar flares, Astrophys. J. Lett., 451, L83, 1995.
Shibata, K., T. Nakamura, T. Matsumoto et al., Chromospheric anemone jets as evidence of ubiquitous magnetic reconnection, Science, 318, 1591, 2007.
Sui, L. and G. D. Holman, Evidence for the formation of a large-scale current sheet in a solar flare, Astrophys. J., 596, L251, 2003.
Svestka, Z., Solar Flares, Reidal, Dordrecht, 1976.
Tajima, T. and K. Shibata, Plasma astrophysics, in Frontiers in Physics, edited by David Pines, Perseus Publishing, Cambridge, Massachusetts, pp. 494, 1997.
Terasawa, T., K. Shibata, and M. Scholer, Comparative study of flares and substorms, Adv. Space Res., 26(3), 573, 2000.
Tsuneta, S., H. Hara, T. Shimizu, L. W. Acton, K. T. Strong, H. S. Hudson, and Y. Ogawara, Observation of a solar flare at the limb with the YOHKOH Soft X-ray Telescope, PASJ, 44, L63, 1992.
Tsurutani, B. T. and C.-I. Meng, Interplanetary magnetic field variations and substorm activity, J. Geophys. Res., 77, 2964, 1972.
Tsurutani, B. T. and W. D. Gonzalez, Calculations of the efficiency of “viscous interaction” between the solar wind and the magnetosphere during intense northward IMF events, Geophys. Res. Lett., 22, 663, 1995.
Tsurutani, B. T. and X.-Y. Zhou, Interplanetary shock triggering of sub-storms: WIND and POLAR, Adv. Space Res., 31, 1063, 2003.
Tsurutani, B. T., B. E. Goldstein, M. E. Burton, and D. E. Jones, A review of the ISEE-3 GEOTAIL magnetic field results, Planet. Space Sci., 34(10), 931, 1986.
Wang, J. and Z. Shi, The flare-associated magnetic changes in an active region. II - Flux emergence and cancellation, Sol. Phys., 143, 119, 1993.
Yokoyama, T., K. Akita, T. Morimoto, K. Inoue, and J. Newmark, Clear evidence of reconnection inflow of a solar flare, Astrophys. J. Lett., 436, L197, 2001.
Zhang, Y. Z., J. X. Wang, and Y. Q. Hu, Two-current-sheet reconnection model of interdependent flare and coronal mass ejection, Astrophys. J., 641, 572, 2006.
Zirin, H. and K. Tanaka, The flare of August 1972, Sol. Phys., 32, 173, 1973.
Zhou, X.-Y. and B. T. Tsurutani, Interplanetary shock triggering of night-side geomagnetic activity: Substorms, pseudobreakups and quiescent events, J. Geophys. Res., 106, 18,957, 2001.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Tsurutani, B.T., Shibata, K., Akasofu, SI. et al. A two-step scenario for both solar flares and magnetospheric substorms: Short duration energy storage. Earth Planet Sp 61, 555–559 (2009). https://doi.org/10.1186/BF03352921
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03352921