Skip to main content

Volume 61 Supplement 5

Special Issue: Flare-Substorm/Space Weather Topics

Coronal loops, flare ribbons and aurora during slip-running

Abstract

Solar two ribbon flares are commonly explained by magnetic field reconnections in the low corona. During the reconnection energetic particles (electrons and protons) are accelerated from the reconnection site. These particles are following the magnetic field lines down to the chromosphere. As the plasma density is higher in these lower layers, there are collisions and emission of radiation. Thus bright ribbons are observed at both ends of flare loops. These ribbons are typically observed in Hα and in EUV with SoHO and TRACE. As the time is going, these ribbons are expanding away of each other. In most studied models, the reconnection site is a separator line, where two magnetic separatrices intersect. They define four distinct connectivity domains, across which the magnetic connectivity changes discontinuously. In this paper, we present a generalization of this model to 3D complex magnetic topologies where there are no null points, but quasi-separatrices layers instead. In that case, while the ribbons spread away during reconnection, we show that magnetic field lines can quickly slip along them. We propose that this new phenomenon could explain fast extension of Hα and TRACE 1600 Å ribbons, fast moving HXR footpoints along the ribbons as observed by RHESSI, and that it is observed in soft X rays with Hinode/XRT.

References

  • Antiochos, S. K., C. R. DeVore, and J. A. Klimchuk, A model for solar coronal mass ejections, Astrophys. J., 510, 485–493, 1999.

    Article  Google Scholar 

  • Aulanier, G., E. E. Deluca, S. K. Antiochos, A. McMullen, and L. Golub, The topology and evolution of the Bastille day flare, Astrophys. J., 540, 1126–1142, 2000.

    Article  Google Scholar 

  • Aulanier, G., E. Pariat, and P. Démoulin, Current sheet formation in quasiseparatrix layers and hyperbolic flux tubes, Astron. Astrophys., 444, 961–976, 2005.

    Google Scholar 

  • Aulanier, G., E. Pariat, P. Démoulin, and DeVore, Slip-running reconnection in quasi-separatrix layers, Sol. Phys., 238, 347–376, 2006.

    Article  Google Scholar 

  • Aulanier, G., L. Golub, E. W. DeLuca, J. W. Cirtain, R. Kano, L. L. Lundquist, N. Nakurage, T. Sakao, and M. Weber, Science, 2007 (submitted).

    Google Scholar 

  • Berlicki, A., B. Schmieder, N. Vilmer, G. Aulanier, and G. DeZanna, Evolution and magnetic topology of the M1.0 flare of October 22, 2002, Astron. Astrophys., 423, 1119–1131, 2004.

    Article  Google Scholar 

  • Chen, P. F. and K. Shibata, An emerging flux trigger mechanism for coronal mass ejections, Astrophys. J., 545, 524–531, 2000.

    Article  Google Scholar 

  • DelZanna, G., B. Schmieder, H. Mason, A. Berlicki, and S. Bradshaw, The gradual phase of the X17 flare on October 28, 2003, Sol. Phys., 239, 173–191, 2006a.

    Article  Google Scholar 

  • DelZanna, G., A. Berlicki, B. Schmieder, and H. Mason, A multiwavelength study of the compact M1 flare on October 22, 2002, Sol. Phys., 234, 95–113, 2006b.

    Article  Google Scholar 

  • Démoulin, P., Magnetic topologies: where will reconnection occur?, in ESA SP, edited by Innes, D., Lagg, A., and Solanki, S. A., 596, 2005.

  • Démoulin, P., Extending the concept of separatrices to QSLs for magnetic reconnection, Adv. Space Res., 37, 1269–1282, 2006.

    Article  Google Scholar 

  • Démoulin, P., J. C. Hénoux, E. R. Priest, and C. Mandrini, Quasi-Separatrix layers in solar flares. I. Method, Astron. Astrophys., 308, 643–655, 1996a.

    Google Scholar 

  • Démoulin, P., E. Priest, and D. Lonie, Three-dimensional magnetic reconnection without null points, J. Geophys. Res., 101, 7631–7646, 1996b.

    Article  Google Scholar 

  • Démoulin, P., L. G. Bagala, C. Mandrini, J. C. Hénoux, and M. G. Rovira, Quasi-separatrix layers in solar flares. II. Observed magnetic configurations, Astron. Astrophys., 325, 305–317 1997.

    Google Scholar 

  • Forbes, T. G. and P. A. Isenberg, A catastrophe mechanism for coronal mass ejections, ApJ, 373, 294–307, 1991.

    Article  Google Scholar 

  • Klimchuk, J., Models of CMEs, Geographical Monograph, 125, 143, 2001.

    Google Scholar 

  • Li, H., B. Schmieder, G. Aulanier, and A. Berlicki, Is pre-eruptive null point reconnection required for triggering eruptions?, Sol. Phys., 237, 85–100, 2006.

    Article  Google Scholar 

  • Lin, J., T. G. Forbes, P. Isenberg, and P. Démoulin, The effect of curvature on flux-rope models of coronal mass ejections, Astrophys. J., 504, 1006–1009, 1998.

    Article  Google Scholar 

  • Lin, J., Motions of flare ribbons and loops in various magnetic configurations, Sol. Phys., 222, 115–136, 2004.

    Article  Google Scholar 

  • Longcope, D. W., Topological methods for the analysis of solar magnetic fields, Living Rev. Sol. Phys., 2, 1–25, 2005.

    Google Scholar 

  • Mandrini, C. H., P. Démoulin, B. Schmieder, E. E. DeLuca, E. Pariat, and W. Uddin, Companion event and precursor of the X17 flare on 28 October 2003, Sol. Phys., 238, 293–312, 2006.

    Article  Google Scholar 

  • Régnier, S. and R. C. Canfield, Evolution of magnetic fields and energetics of flares in active region 8210, Astron. Astrophys., 451, 319–330, 2007.

    Article  Google Scholar 

  • Schmieder, B., Magnetic source regions of coronal mass ejections, J. Astrophys. Astron., 27, 139–149, 2006.

    Article  Google Scholar 

  • Schmieder, B., P. Heinzel, L. van Driel, and J. R. Lemen, Post-flare loops of 26 June 1992, II, Sol. Phys., 165, 303–328, 1996.

    Article  Google Scholar 

  • Schmieder, B., G. Aulanier, P. Démoulin, L. van Driel, T. Roudier, N. Nitta, and G. Cauzzi, Magnetic reconnection driven by emergence of sheared magnetic field, Astron. Astrophys., 325, 1213–1225, 1997.

    Google Scholar 

  • Schmieder, B., C. H. Mandrini, P. Démoulin, E. Pariat, A. Berlicki, and E. DeLuca, Magnetic reconfiguration before the X 17 Solar flare of October 28 2003, Adv. Space Res., 37, 1313–1316, 2006.

    Article  Google Scholar 

  • Schmieder, B., C. Mandrini, G. Aulanier, H. Li, and A. Berlicki, What is the role of magnetic null points in large flares?, Adv. Space Res., 39, 1840–1846, 2007.

    Article  Google Scholar 

  • Su, Y. N., L. Golub, A. A. van Ballegooijen, and M. Gros, Analysis of magnetic shear in an X17 solar flare on October 28, 2003, Sol. Phys., 236, 325–349, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Schmieder.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Schmieder, B., Aulanier, G., Démoulin, P. et al. Coronal loops, flare ribbons and aurora during slip-running. Earth Planet Sp 61, 565–568 (2009). https://doi.org/10.1186/BF03352923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352923

Key words

  • Sun: flares
  • magnetosphere: aurora