Skip to main content

Volume 61 Supplement 5

Special Issue: Flare-Substorm/Space Weather Topics

Flares and the chromosphere

Abstract

The chromosphere (the link between the photosphere and the corona) plays a crucial role in flare and CME development. In analogies between flares and magnetic substorms, it is normally identified with the ionosphere, but we argue that the correspondence is not exact. Much of the important physics of this interesting region remains to be explored. We discuss chromospheric flares in the context of recent observations of white-light flares and hard X-rays as observed by TRACE and RHESSI, respectively. We interpret key features of these observations as results of the stepwise changes a flare produces in the photospheric magnetic field.

References

  • Allred, J. C., S. L. Hawley, W. P. Abbett, and M. Carlsson, Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares, ApJ, 630, 573–586, 2005.

    Article  Google Scholar 

  • Arber, T. D., M. Haynes, and J. E. Leake, Emergence of a flux tube through a partially ionized solar atmosphere, ApJ, 666, 541, 2007.

    Article  Google Scholar 

  • Aschwanden, M. J., Particle acceleration and kinematics in solar flares, Space Sci. Rev., 101, 1–227, 2002.

    Article  Google Scholar 

  • Banks, P., Collision frequencies and energy transfer. ions, Planet. Space Sci., 14, 1105–1122, 1966

    Article  Google Scholar 

  • Berlicki, A., Observations and modeling of line asymmetries in chromo-spheric flares, in The Physics of Chromospheric Plasmas, edited by P. Heinzel, I. Dorotovič, and R. J. Rutten, 387–406, 2007.

    Google Scholar 

  • Biesecker, D. A., D. C. Myers, B. J. Thompson, D. M. Hammer, and A. Vourlidas, Solar phenomena associated with “EIT waves”, ApJ, 569, 1009–1015, 2002.

    Article  Google Scholar 

  • Brown, J. C., The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of hard X-ray bursts, Solar Phys., 18, 489–502, 1971.

    Article  Google Scholar 

  • Carrington, R. C., Description of a singular appearance seen in the Sun on September 1, 1859, Mon. Not. R. Astr. Soc, 20, 13–16, 1859.

    Article  Google Scholar 

  • Emslie, A. G. and P. A. Sturrock, Temperature minimum heating in solar flares by resistive dissipation of Alfvén waves, Solar Phys., 80, 99–102, 1982.

    Article  Google Scholar 

  • Fletcher, L. and H. S. Hudson, Flare energy transport by Alfvén waves in the impulsive phase, ApJ, 675, 1645–1655, 2008.

    Article  Google Scholar 

  • Fletcher, L., I. G. Hannah, H. S. Hudson, and T. A. Metcalf, A TRACE white light and RHESSI hard X-ray study of flare energetics, ApJ, 656, 1187–1196, 2007.

    Article  Google Scholar 

  • Hale, G. E., The spectrohelioscope and its work, ApJ, 71, 73–101, 1930.

    Article  Google Scholar 

  • Haerendel, G., Commonalities between ionosphere and chromosphere, Space Sci. Rev., 124, 317–331, 2007.

    Article  Google Scholar 

  • Hudson, H. S., Thick-target processes and white-light flares, Solar Phys., 24, 414–428, 1972.

    Article  Google Scholar 

  • Hudson, H. S., Implosions in coronal transients, ApJ, 531, L75–L77, 2000.

    Article  Google Scholar 

  • Hudson, H., Chromospheric flares, in The Physics of Chromospheric Plasmas, edited by P. Heinzel, I. Dorotovič, and R. J. Rutten, 365–386, 2007.

    Google Scholar 

  • Hudson, H. S., C. J. Wolfson, and T. R. Metcalf, White-light flares: a TRACE/RHESSI overview, Solar Phys., 234, 79–93, 2006.

    Article  Google Scholar 

  • Kane, S. R. and R. F. Donnelly, Impulsive hard X-ray and ultraviolet emission during solar flares, ApJ, 164, 151–163, 1971.

    Article  Google Scholar 

  • Kazeminezhad, F. and M. Goodman, Magnetohydrodynamic simulations of solar chromospheric dynamics using a complete electrical conductivity tensor, ApJ (Suppl.), 166, 613–633, 2006.

    Article  Google Scholar 

  • Lin, R. P. and H. S. Hudson, 10–100 keV electron acceleration and emission from solar flares, Solar Phys., 17, 412–435, 1971.

    Article  Google Scholar 

  • Longcope, D. and B. T. Welsch, A model for the emergence of a twisted magnetic flux tube, ApJ, 545, 1089–1100, 2000.

    Article  Google Scholar 

  • Melrose, D. B., Energy propagation into a flare kernel during a solar flare, ApJ, 387, 403–413, 1992.

    Article  Google Scholar 

  • Miller, J. A., P. J. Cargill, A. G. Emslie, G. D. Holman, B. R. Dennis, T. N. LaRosa, R. M. Winglee, S. G. Benka, and S. Tsuneta, J. Geophys. Res., 102, 14,631–14,659, 1997.

    Article  Google Scholar 

  • Obayashi, T., Energy build-up and release mechanisms in solar and auroral flares, Solar Phys., 40, 217–226, 1975.

    Article  Google Scholar 

  • Régnier, S. and E. R. Priest, Nonlinear force-free models for the solar corona. I. Two active regions with very different structure, Astron. Astrophys., 468, 701–709, 2007.

    Article  Google Scholar 

  • Schwenn, R., Space weather: The solar perspective, Living Rev. Solar Phys., 3(2), 2007.

    Google Scholar 

  • Stasiewicz, K. et al., Space Sci. Rev., 92, 423–533, 2001.

    Article  Google Scholar 

  • Sudol, J. J. and J. W. Harvey, Longitudinal magnetic field changes accompanying solar flares, ApJ, 635, 647–658, 2005.

    Article  Google Scholar 

  • Thomas, R. J. and R. G. Teske, Solar soft X-rays and solar activity. II: Soft X-ray emission during solar flares, Solar Phys., 16, 431–453, 1971.

    Article  Google Scholar 

  • Thompson, B. J., J. B. Gurman, W. M. Neupert, J. S. Newmark, J.-P. Delaboudinière, O. C. St. Cyr, S. Stezelberger, K. P. Dere, R. A. Howard, and D. J. Michels, SOHO/EIT observations of the 1997 April 7 coronal transient: Possible evidence of coronal moreton waves, ApJ, 517, L151–L154, 1999.

    Article  Google Scholar 

  • Uchida, Y., M. D. Altschuler, and G. Newkirk,Jr., Flare-produced coronal MHD-fast-mode wavefronts and Moreton’s wave phenomenon, Solar Phys., 28, 495–516, 1973.

    Article  Google Scholar 

  • Veronig, A. M., M. Karlicky, B. Vrsnak, M. Temmer, J. Magdalenić, B. R. Dennis, W. Otruba, and W. Pötzi, X-ray sources and magnetic reconnection in the X3.9 flare of 2003 November 3, Astron. Astrophys., 446, 675–690, 2006.

    Article  Google Scholar 

  • Wang, H., Evolution of vector magnetic fields and the August 27 1990 X-3 flare, Solar Phys., 140, 85–98, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh S. Hudson.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Hudson, H.S., Fletcher, L. Flares and the chromosphere. Earth Planet Sp 61, 577–580 (2009). https://doi.org/10.1186/BF03352926

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352926

Key words

  • Solar flares
  • solar chromosphere
  • solar corona
  • Alfvén waves