Skip to main content

Volume 61 Supplement 5

Special Issue: Flare-Substorm/Space Weather Topics

Development of the global simulation model of the heliosphere

Abstract

The heliospheric structure ranging from the solar surface to the earth’s orbit is self-consistently reproduced from a time-stationary three-dimensional (3D) magnetohydrodynamic (MHD) simulation. The simulation model incorporates gravity, Coriolis, and centrifugal forces into the momentum equation, and coronal heating and field-aligned thermal conduction into the energy equation. The heating term in the present model has its peak at 2.8 solar radius (Rs) and exponentially falls to zero at greater distance from the solar surface. The absolute value of heating depends on the topology of the solar magnetic field so as to be in inverse proportion with the magnetic expansion factor. The results of the simulation simultaneously reproduce the plasma-exit structure on the solar surface, the high-temperature region in the corona, the open- and closed-magnetic-field structures in the corona, the fast and slow streams of the solar wind, and the sector structure in the heliosphere.

References

  • Brio, M. and C. C. Wu, An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys., 75, 400–422, 1988.

    Article  Google Scholar 

  • Detman, T., Z. Smith, M. Dryer, C. D. Fry, C. N. Arge, and V. Pizzo, A hybrid heliospheric modeling system: Background solar wind, J. Geophys. Res., 111, A07102, doi:10.1029/2005JA011430, 2006.

    Google Scholar 

  • Dryer, M., Multidimensional, magnetohydrodynamic simulation of solargenerated disturbances: space weather forcasting of geomagnetic storms, AIAA J., 36, 365–370, 1998.

    Article  Google Scholar 

  • Gosling, J. T. and V. J. Pizzo, Formation of corotating interaction regions and their three dimensional structure, Space Sci. Rev., 89, 21–52, 1999.

    Article  Google Scholar 

  • Hakamada, K. and S. Akasofu, Simulation of three-dimensional solar wind disturbances and resulting geomagnetic storms, Space Sci. Rev., 31, 3–70, 1982.

    Article  Google Scholar 

  • Linker, J. A., Z. Mikic, D. A. Biesecker, R. J. Forsyth, S. E. Gibson, A. J. Lazarus, A. Lecinski, P. Riley, A. Szabo, and B. J. Thompson, Magnetohydrodynamic modeling of the solar corona during Whole Sun Month, J. Geophys. Res., 104, 9809–9830, 1999.

    Article  Google Scholar 

  • Lionello, R., J. A. Linker, and Z. Mikic, Including the transition region in models of the large-scale solar corona, Astrophys. J., 546, 542–551, 2001.

    Article  Google Scholar 

  • Manchester, W. B., T. I. Gombosi, I. Roussev, D. D. De Zeeuw, I. V. Sokolov, K. G. Powell, G. Toth, and M. Opher, Three-dimensional MHD simulation of a flux rope driven CME, J. Geophys. Res., 109, A01102, doi:10.1029/2002JA009672, 2004.

    Google Scholar 

  • Neugebauer, M., P. C. Liewer, B. E. Goldstein, X. Zhou, and J. T. Steinberg, Solar wind stream interaction regions without sector boundaries, J. Geophys. Res., 109, A10102, doi:10.1029/2004JA010456, 2004.

    Article  Google Scholar 

  • Riley, P., J. A. Linker, and Z. Mikic, An empirically driven global MHD model of the solar corona and inner heliosphere, J. Geophys. Res., 106, 15,889–15,901, 2001.

    Google Scholar 

  • Shen, F., X. Feng, S. T. Wu, and C. Xiang, Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event, J. Geophys. Res., 112, A06109, doi:10.1029/2006JA012164, 2007.

    Google Scholar 

  • Sittler, Jr., E. C., L. Ofman, S. Gibson, M. Guhathakurta, J. Davila, R. Skoug, A. Fludra, and T. Holzer, Development of multidimensional MHD model for the solar corona and solar wind, Solar wind 10, 2002.

    Google Scholar 

  • Tanaka, T., Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields, J. Comput. Phys., 111, 381–389, 1994.

    Article  Google Scholar 

  • Tóth, G., I. V. Sokolov, T. I. Gombosi, D. R. Chesney, C. R. Clauer, D. L. De Zeeuw, K. C. Hansen, K. J. Kane, W. Manchester, R. C. Oehmke, K. G. Powell, A. J. Ridley, I. I. Roussev, Q. F. Stout, O. Volberg, R. A. Wolf, S. Sazykin, A. Chan, B. Yu, and J. Kóta, SpaceWeather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi:10.1029/2005JA011126, 2005.

    Article  Google Scholar 

  • Wang, Y. M. and N. R. Sheely Jr., The solar wind speed and coronal fluxtube expansion, Astrophys. J., 355, 726–732, 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satomi Kamei.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Kamei, S., Nakamizo, A., Tanaka, T. et al. Development of the global simulation model of the heliosphere. Earth Planet Sp 61, 581–584 (2009). https://doi.org/10.1186/BF03352927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352927

Key words

  • Solar wind
  • MHD simulation
  • CIR