Skip to main content

Volume 61 Supplement 5

Special Issue: Flare-Substorm/Space Weather Topics

Numerical simulations of the solar corona and Coronal Mass Ejections

Abstract

Numerical simulations of Coronal Mass Ejections (CMEs) can provide a deeper insight in the structure and propagation of these impressive solar events. In this work, we present our latest results of numerical simulations of the initial evolution of a fast CME. For this purpose, the equations of ideal MagnetoHydroDynamics (MHD) have been solved on a three-dimensional (3D) mesh by means of an explicit, finite volume solver, where the simulation domain ranges from the lower solar corona up to 30Re. In order to simulate the propagation of a CME throughout the heliosphere, a magnetic flux rope is superposed on top of a stationary background solar (MHD) wind with extra density added to the flux rope. The flux rope is launched by giving it an extra initial velocity in order to get a fast CME forming a 3D shock wave. The magnetic field inside the initial flux rope is described in terms of Bessel functions and possesses a high amount of twist.

References

  • Chané, E., B. van der Holst, C. Jacobs, S. Poedts, and D. Kimpe, Inverse and normal coronal mass ejections: evolution up to 1AU, A&A, 447, 727–733, 2006.

    Article  Google Scholar 

  • Cremades, H. and V. Bothmer, On the three-dimensional configuration of coronal mass ejections, A&A, 422, 307–322, 2004.

    Article  Google Scholar 

  • Gibson, S. E. and B. C. Low, A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection, ApJ, 493, 460–473, 1998.

    Article  Google Scholar 

  • Gilbert, H. R., T. E. Holzer, J. T. Burkepile, and A. J. Hundhausen, Active and eruptive prominences and their relationship to coronal mass ejections, ApJ, 537, 503–515, 2000.

    Article  Google Scholar 

  • Gopalswamy, N., S. Yashiro, Y. Liu, G. Michalek, A. Vourlidas, M. L. Kaiser, and R. A. Howard, Coronal mass ejections and other extreme characteristics of the 2003 October–November solar eruptions, J. Geophys. Res., 110, A09S15, 2005.

    Google Scholar 

  • Groth, C. P. T., D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell, Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magneto-sphere, J. Geophys. Res., 105, 25053–25078, 2000.

    Article  Google Scholar 

  • Jacobs, C., S. Poedts, B. van der Holst, and E. Chané, On the effect of the background wind on the evolution of interplanetary shocks, A&A, 430, 1099–1107, 2005.

    Article  Google Scholar 

  • Jacobs, C., B. van der Holst, and S. Poedts, Comparison between 2.5D and 3D simulations of coronal mass ejections, A&A, 470, 359–365, 2007.

    Article  Google Scholar 

  • Jing, J., V. B. Yurchyshyn, G. Yang, Y. Xu, and H. Wang, On the relation between filament eruptions, flares, and coronal mass ejections, ApJ, 614, 1054–1062, 2004.

    Article  Google Scholar 

  • Karpen, J. T., S. K. Antiochos, M. Hohensee, and J. A. Klimchuk, Are magnetic dips necessary for prominence formation?, ApJ, 553, L85–L88, 2001.

    Article  Google Scholar 

  • Kippenhahn, R. and A. Schlüter, Eine Theorie der solaren Filamente, Z.As-trophys., 43, 36–62, 1957.

    Google Scholar 

  • Kuperus, M. and M. A. Raadu, The support of prominences formed in neutral sheets, A&A, 31, 189–193, 1974.

    Google Scholar 

  • Leroy, J. L., V. Bommier, and S. Sahal-Bréchot, New data on the magnetic structure of quiescent prominences, A&A, 131, 33–44, 1984.

    Google Scholar 

  • Low, B. C. and M. Zhang, Magnetostatic structures of the solar corona III. Normal and inverse quiescent prominences, ApJ, 609, 1098–1111, 2004.

    Article  Google Scholar 

  • Manchester, W., The role of nonlinear Alfvén waves in shear formation during solar magnetic flux emergence, ApJ, 547, 503–519, 2001.

    Article  Google Scholar 

  • Manchester, W. B., T. Gombosi, I. Roussev, D. L. De Zeeuw, I. V. Sokolov, K. G. Powell, G. Toth, and M. Opher, Three-dimensional MHD simulation of a flux rope driven CME, J. Geophys. Res., 109, A01102, 2004.

    Google Scholar 

  • Romashets, E. P. and M. Vandas, Interplanetary magnetic clouds of toroidal shapes, Proc. ISCS 2003 Symposium, 535–540, 2003.

    Google Scholar 

  • Roussev, I.I., T. G. Forbes, T. I. Gombosi, I. V. Sokolov, D. L. DeZeeuw, and J. Birn, A three-dimensional flux rope model for coronal mass ejections based on a loss of equilibrium, ApJ, 588, L45–L48, 2003.

    Article  Google Scholar 

  • Titov, V. S. and P. Démoulin, Basic topology of twisted magnetic configurations in solar flares, A&A, 351, 707–720, 1999.

    Google Scholar 

  • Wang, Y.-M. and N. R. Sheeley, Solar wind speed and coronal flux-tube expansion, ApJ, 355, 726–732, 1990.

    Article  Google Scholar 

  • Wu, S. T., W. P. Guo, D. J. Michels, and L. F. Burlaga, MHD description of the dynamical relationships between a flux rope, streamer, coronal mass ejection, and magnetic cloud: An analysis of the January 1997 Sun-Earth connection event, J. Geophys. Res., 104, 14789, 1999.

    Article  Google Scholar 

  • Yashiro, S., N. Gopalswamy, G. Michalek, O. C. St. Cyr, S. P. Plunkett, N. B. Rich, and R. A. Howard, A catalog of white light coronal mass ejections observed by the SOHO spacecraft, J. Geophys. Res., 109, A07105, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefaan Poedts.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Poedts, S., Jacobs, C., van der Holst, B. et al. Numerical simulations of the solar corona and Coronal Mass Ejections. Earth Planet Sp 61, 599–602 (2009). https://doi.org/10.1186/BF03352931

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352931

Key words

  • Magnetohydrodynamics
  • numerical
  • coronal mass ejections