Skip to main content

Volume 61 Supplement 5

Special Issue: Flare-Substorm/Space Weather Topics

Statistically predicting Dst without satellite data

Abstract

In this paper we construct a regression relationship for predicting Dst 1 hour ahead. Our model uses only previous Dst values. This regression is totally unbiased and does not rely on any physical model, except for the fact that Dst somehow contains the information on the recurrent geomagnetic storms. This regression has the prediction efficiency of 0.964, linear correlation with official Dst index of 0.982, and RMS of 4.52 nT. These characteristics are inferior only to our other model, which uses satellite data and provides the prediction efficiency of 0.975, linear correlation with official Dst index of 0.986, and RMS of 3.76 nT. This makes it quite suitable for prediction purposes when satellite data are not available.

References

  • Balikhin, M. A., O. M. Boaghe, S. A. Billings, and H. St. C. K. Alleyne, Terrestrial magnetosphere as a nonlinear resonator, Geophys. Res. Lett., 28, 1123–1126, 2001.

    Article  Google Scholar 

  • Ballatore, P. and W. D. Gonzalez, On the estimates of the ring current injection and decay, Earth Planets Space, 55, 427–435, 2003.

    Article  Google Scholar 

  • Burton, R. K., R. L. McPherron, and C. T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204–4214, 1975.

    Article  Google Scholar 

  • Campbell, W. H., Geomagnetic storms, the Dst ring-current myth and lognormal distributions, J. Atm. Terr. Phys., 58, 1171–1187, 1996.

    Article  Google Scholar 

  • Cerrato, Y., E. Saiz, C. Cid, and M. A. Hidalgo, Geomagnetic storms: their sources and a model to forecast Dst index, in Lecture notes and essays in Astrophysics, pp. 131–142, 2004.

    Google Scholar 

  • Cid, C., E. Saiz, and Y. Cerrato, Physical models to forecast the Dst index: comparison of results, Proc. Solar Wind 11—SOHO 16 “Connecting Sun and Heliosphere”, Whistler, Canada 12–17 June 2005 (ESA SP-592, September 2005), 116–119, 2005.

    Google Scholar 

  • Dryer, M., S. T. Wu, G. Gislason, S. M. Han, Z. K. Smith, J. F. Wang, D. F. Smart, and M. A. Shea, Magnethydrodynamic modelling of interplanetary disturbances between the Sun and Earth, Astrophys. Space Sci., 105, 187–208, 1984.

    Article  Google Scholar 

  • Fenrich, R. R. and J. G. Luhmann, Geomagnetic response to magnetic clouds of different polarity, Geophys. Res. Lett., 25, 2999, 1998.

    Article  Google Scholar 

  • Fisher, R. A., Statistical methods for research workers, Twelefth edition, London, Oliver and Boyd, 1954.

    Google Scholar 

  • Harrison, R. F. and P. M. Drezet, The application of an adaptive nonlinear systems identification technique to the on-line forecast of Dst index, Proc. Les Woolliscroft memorial Conf. / Sheffield Space Plasma Meeting: Multipoint measurements versus theory, Sheffield, UK, Apr 24–26, 2001 (ESA SP-492), 141–146, 2001.

    Google Scholar 

  • Hudson, D. J., Statistics Lectures on Elementary Statistics and Probability, Geneva, CERN, 1964.

    Google Scholar 

  • Johnson, J. R. and S. Wing, A cumulant-based analysis of nonlinear magnetospheric dynamics, Report PPPL-3919rev, http://www.pppl.gov/pub_report/2004/PPPL-3919rev.pdf, 2004.

    Google Scholar 

  • Joselyn, J. A., Geomagnetic activity forecasting—the state-of-the-art, Rev. Geophys., 33, 383–401, 1995.

    Article  Google Scholar 

  • Kugblenu, S., S. Taguchi, and T. Okuzawa, Prediction of the geomagnetic storm associated Dst index using an artificial neural network algorithm, Earth Planets Space, 51, 307–313, 1999.

    Article  Google Scholar 

  • Li, X., M. Temerin, D. N. Baker, G. D. Reeves, D. Larson, and S. G. Kanekal, The predictability of the magnetosphere and space weather, EOS, 84, 2003.

  • Marubashi, K., The space weather forecast program, Space Sci. Rev., 51, 197–214, 1989.

    Article  Google Scholar 

  • O’Brien, T. P. and R. L. McPherron, Forecasting the ring current index Dst in real time, J. Atm. Sol.-Terr. Phys., 62, 1295–1299, 2000a.

    Article  Google Scholar 

  • O’Brien, T. P. and R. L. McPherron, An empirical phase-space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707, 2000b.

    Article  Google Scholar 

  • Oh, S. Y. and Y. Yi, Relationships of the solar wind parameters with the magnetic storm magnitude and their association with the interplanetary shock, J. Korean Astron. Soc., 37, 151–157, 2004.

    Article  Google Scholar 

  • Pallocchia, G., E. Amata, G. Consolini, M. F. Marcucci, and I. Bertello, ANN prediction of the Dst index, Mem. S.A.It. Suppl., 9, 120–122, 2006.

    Google Scholar 

  • Parnowski, A. S., Dst prediction using the linear regression analysis, Kosmichna Nauka i Technologiya, 2008 (accepted, in Russian).

    Google Scholar 

  • Raeder, J. et al., Global simulation of the Geospace Environment Modeling substorm challenge event, J. Geophys. Res., 106, 381–396, 2001.

    Article  Google Scholar 

  • Rangarajan, G. K. and L. M. Barreto, Use of Kp index of geomagnetic activity in the forecast of solar activity, Earth Planets Space, 51, 363–372, 1999.

    Article  Google Scholar 

  • Siscoe, G., R. L. McPherron, M. W. Liemohn, A. J. Ridley, and G. Lu, Reconciling prediction algorithms for Dst, J. Geophys. Res., 110, A02215, doi:10.1029/2004JA010465, 2005.

    Google Scholar 

  • Temerin, M. and X. Li, A new model for the prediction of Dst on the basis of the solar wind, J. Geophys. Res., 107, 1472, doi:10.1029/2001JA007532, 2002.

    Article  Google Scholar 

  • Temerin, M. and X. Li, Dst model for 1995–2002, J. Geophys. Res., 111, A04221, doi:10.1029/2005JA011257, 2006.

    Google Scholar 

  • Valdivia, J. A., A. S. Sharma, and K. Papadopoulos, Prediction of magnetic storms by nonlinear models, Geophys. Res. Lett., 23, 2899–2902, 1996.

    Article  Google Scholar 

  • Watanabe, S., E. Sagawa, K. Ohtaka, and H. Shimazu, Prediction of the Dst index from solar wind parameters by a neural network method, Earth Planets Space, 54, 1263–1275, 2002.

    Article  Google Scholar 

  • Wei, H. L., S. A. Billings, and M. A. Balikhin, Analysis of the geomagnetic activity of the Dst index and self-affine fractals using wavelet transforms, Nonlinear Process. Geophys., 11, 303–312, 2004.

    Article  Google Scholar 

  • Wing, S., J. R. Johnson, J. Jen, C.-I. Meng, D. G. Sibeck, K. Bechtold, J. Freeman, K. Costello, M. Balikhin, and K. Takahashi, Kp forecast models, J. Geophys. Res., 110, A04203, doi:10.1029/2004JA010500, 2005.

    Google Scholar 

  • Zhou, X.-Y. and F.-S. Wei, Prediction of recurrent geomagnetic disturbances by using adaptive filtering, Earth Planets Space, 50, 839–845, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Parnowski.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Parnowski, A.S. Statistically predicting Dst without satellite data. Earth Planet Sp 61, 621–624 (2009). https://doi.org/10.1186/BF03352936

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352936

Key words

  • Space weather
  • statistical model
  • Dst prediction