Skip to main content

Characteristics of gravity waves observed with intensive radiosonde campaign during November–December 2005 over western Sumatera


Characteristics of gravity waves are studied using radiosonde campaign conducted during November–December 2005 at Koto Tabang (KT, 0.2°S, 100.32°E). Intensive sounding with hourly launches was also conducted on seven days to study the characteristics of short period (2–6 hours) waves along with EAR data. Gravity waves with period (τ) of 3 hours and vertical wavelength (λ z ) of 10 km seemed to be generated due to localized convection around KT, which is inferred from X-band Doppler radar. The energy of the gravity wave with period of 2–3 days and vertical wavelength of 3–5 km is largest between 15 and 20 km and 25 and 30 km. We also report the comparison of the wave activity and its interaction with background wind between the three campaigns (CPEA-I, CPEA-II and Nov. 2002). Most of the time waves are propagating towards east and the source of gravity waves is strongly related to the slowly eastward-advecting tropospheric convection, implying that the wave activity was generated at far distant sources located west of KT. A key finding of this study is neither short period nor long-period gravity waves are generated during stationary type of convection. The change in the propagation direction of the short period waves within the event is observed which is not expected.


  • Alexander, M. J. and J. R. Holton, A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves, J. Atmos. Sci., 54, 408–419, 1997.

    Article  Google Scholar 

  • Alexander, M. J., P. T. May, and J. H. Beres, Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment, J. Geophys. Res., 109, D20S04, doi:10.1029/2004JD004729, 2004.

    Google Scholar 

  • Beres, J. H., M. J. Alexander, and J. R. Holton, A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind, J. Atmos. Sci., 61, 324–337, 2004.

    Article  Google Scholar 

  • Fritts, D. C. and M. J. Alexander, Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41(1), 1003, doi:10.1029/2001RG000106, 2003.

    Article  Google Scholar 

  • Fukao, S., Coupling Processes in the Equatorial Atmosphere (CPEA): A project overview, J. Meteor. Soc. Jpn., 84A, 1–18, 2006.

    Article  Google Scholar 

  • Fukao, S., H. Hashiguchi, M. Yamamoto, T. Tsuda, T. Nakamura, M. K. Yamamoto, T. Sato, M. Hagio, and Y. Yabugaki, Equatorial Atmosphere Radar (EAR): System description and first results, Radio Sci., 38(3), 1053, doi:10.1029/2002RS002767, 2003.

    Article  Google Scholar 

  • Garcia, R. R. and S. Solomon, The effects of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res., 90, 3850–3868, 1985.

    Article  Google Scholar 

  • Gurevich, A. V., K. Rinnert, and K. Schlegel, The long-wave portion of the plasma turbulence spectrum in the lower E region, Int. Geomagn. Aeron., 1, 15 p., 1997.

  • Hamilton, K., Comprehensive meteorological modeling of the middle atmosphere: A tutorial review, J. Atmos. Terr. Phys., 58, 1591–1627, 1996.

    Article  Google Scholar 

  • Hines, C. O., Internal AGWs at ionospheric heights, Can. J. Phys., 38, 1441–1481, 1960.

    Article  Google Scholar 

  • Holton, J. R., The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sci., 40, 2497–2507, 1983.

    Article  Google Scholar 

  • Horinouchi, T., T. Nakamura, and J. Kosaka, Convectively generated mesoscale gravity waves simulated throughout the middle atmosphere, Geophys. Res. Lett., 29(21), doi:10.1029/2002GL016069, 2002.

  • Houghton, J. T., The stratosphere and the mesosphere, Quart. J. R. Meteor. Soc., 104, 1–29, 1978.

    Article  Google Scholar 

  • Kawashima, M., Y. Fujiyoshi, M. Ohi, T. Honda, T. Kozu, T. Shimamai, and H. Hashiguchi, Overview of doppler radar observations of precipitating cloud systems in Sumatera island during the first CPEA campaign, J. Meteor. Soc. Jpn., 84A, 33–56, 2006.

    Article  Google Scholar 

  • Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.

    Article  Google Scholar 

  • Ratnam, M. V., T. Tsuda, Y. Shibagaki, T. Kozu, and S. Mori, Gravity wave characteristics over the equator observed during the CPEA campaign using simultaneous data from multiple stations, J. Meteor. Soc. Jpn., 84A, 239–257, 2006a.

    Article  Google Scholar 

  • Ratnam, M. V., T. Tsuda, T. Kozu, and S. Mori, Modulation of tropopause structure due to local and global-scale temperature variations: A case study using simultaneous radiosonde and CHAMP/GPS measurements, J. Meteor. Soc. Jpn., 84, 989–1003, 2006b.

    Article  Google Scholar 

  • Tsuda, T., Y. Murayama, H. Wiryosumarto, S. W. B. Harijono, and S. Kato, Radiosonde observations of equatorial atmospheric dynamics over Indonesia, 2, Characteristics of gravity waves, J. Geophys. Res., 99, 10,507–10,516, 1994.

    Article  Google Scholar 

  • Tsuda, T., M. Venkat Ratnam, T. Kozu, and S. Mori, Characteristics of 10-day Kelvin wave observed with radiosondes and CHAMP/GPS occultation during the CPEA campaign (April–May, 2004), J. Meteor. Soc. Jpn., 84A, 277–293, 2006.

    Article  Google Scholar 

  • Vincent, R. A. and M. J. Alexander, Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability, J. Geophys. Res., 105, 17,971–17,982, 2000.

    Article  Google Scholar 

  • Warner, C. D. and M. E. McIntyre, On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere, J. Atmos. Sci., 53, 3213–3235, 1996.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Venkat Ratnam.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Cite this article

Ratnam, M.V., Alexander, S.P., Kozu, T. et al. Characteristics of gravity waves observed with intensive radiosonde campaign during November–December 2005 over western Sumatera. Earth Planet Sp 61, 983–993 (2009).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Gravity Wave
  • Lower Stratosphere
  • Background Wind
  • Tropopause Height
  • Vertical Wavelength