Skip to main content

Argon retentivity of carbonaceous materials: feasibility of kerogen as a carrier phase of Q-noble gases in primitive meteorites

Abstract

Extremely large amounts of heavy noble gases are concentrated in phase Q, which seems to be a carbonaceous phase analogous to terrestrial Type III kerogen. Phase Q must have very high noble gas retentivity based on the presence of such extremely large amounts of heavy noble gases in a very minor fraction of the meteorite. To verify that kerogen is a carrier phase of Q-noble gases, X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) using synchrotron radiation were carried on for kerogens (coals) and carbon allotropes that had been bombarded by 3-keV Ar ions, and the Ar retentivities of the two materials were compared. This comparison of the estimated Ar concentrations in the target materials revealed that carbon allotropes (graphite, fullerene, carbon nanotube, and diamond) have a much higher Ar retentivity than kerogens. This unexpected result clearly shows that the terrestrial kerogens tested in our study are not suitable as a carrier phase of Ar and, consequently, that phase Q may not be similar to the terrestrial kerogen tested. If heavy noble gases are really concentrated in carbonaceous components of primitive meteorites, phase Q may have a more ordered structure than terrestrial kerogen based on the fact that the greatest difference between terrestrial kerogen and carbon allotropes is the degree of order of the molecular structure.

References

  • Anders, E., Noble gases in meteorites: evidence for presolar matter and superheavy elements, Proc. R. Soc. A, 374, 207–238, 1981.

    Article  Google Scholar 

  • Baba, Y., H. Yamamoto, and T. A. Sasaki, Trapping of low-energy xenon ions in surfaces of transition metals, Nucl. Instr. Methods. B, 63, 391–394, 1992a.

    Article  Google Scholar 

  • Baba, Y., H. Yamamoto, and T. A. Sasaki, XPS and XAES measurements on trapped rare gases in transition metals, Nucl. Instr. Method. B, 66, 424–432, 1992b.

    Article  Google Scholar 

  • Behar, F. and M. Vandenbroucke, Chemical modeling of kerogen, Org. Geochem., 11, 15–24, 1987.

    Article  Google Scholar 

  • Berger, M. J., J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, and D. S. Zucker, XCOM: Photon Cross Sections Database, Web Version 1.3, available at http://physics.nist.gov/xcom, 2005.

  • Busemann, H. and O. Eugster, The trapped noble gas component in achondrites, Meteorit. Planet. Sci., 37, 1865–1891, 2002.

    Article  Google Scholar 

  • Busemann, H., H. Baur, and R. Wieler, Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system etching, Meteorit. Planet. Sci., 35, 949–973, 2000.

    Article  Google Scholar 

  • Durand, B. and J. C. Monin, Kerogen, edited by B. Durand, 113 pp., Éditions Technip, Paris, 1980.

  • Espitalié, J., M. Madec, and B. Tissot, Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration, Bull. Am. Assoc. Pet. Geol., 64, 59–66, 1980.

    Google Scholar 

  • Fan, X., C. Liu, T. Yu, Y. Shi, J. Li, M. Ye, H. Guo, N. Xiao, Y. Pen, and F. Cai, Preparation and ion implantation of solid C60 films, Surf. Coat. Tech., 65, 219–223, 1994.

    Article  Google Scholar 

  • Ferrante, R. F., M. H. Moore, J. A. Nuth III, and T. Smith, Laboratory studies of catalysis of CO to organics on grain analogs, Icarus, 145, 297–300, 2000.

    Article  Google Scholar 

  • Frick, U., Noble gas fractionation during synthesis of carbonaceous matter, Proc. Lunar Planet. Sci. Conf., 1961–1973, 1979.

    Google Scholar 

  • Fukunaga, K., J. Matsuda, K. Nagao, M. Miyamoto, and K. Ito, Noble-gas enrichment in vapour-growth diamonds and the origin of diamonds in ureilites, Nature, 328, 141–143, 1987.

    Article  Google Scholar 

  • Gardinier, A., S. Derenne, F. Robert, F. Behar, C. Largeau, and J. Maquet, Solid state CP/MAS 13C NMR of the insoluble organic matter of the Orgueil and Murchinson meteorites: Quantitative study, Earth Planet. Sci. Lett., 184, 9–21, 2000.

    Article  Google Scholar 

  • Greene, J. P., J. Nemanich, G. E. Thomas, and S. L. Schiel, Noble gas sputtering calculations using TRIM, Nucl. Instr. Methods. A, 397, 91–98, 1997.

    Article  Google Scholar 

  • Hahn, J. R. and H. Kang, Spatial distribution of defects generated by hyperthermal Ar+ impact onto graphite, Surface Sci., 446, L77–L82, 2000.

    Article  Google Scholar 

  • Hartman-Stroup, C., The effect of organic matter type and organic carbon content on Rock-Eval hydrogen index in oil shales and source rocks, Org. Geochem., 13, 1051–1060, 1987.

    Google Scholar 

  • Hayatsu, R., R. G. Scott, and R. E. Winane, Comparative structural study of meteoritic polymer with terrestrial geopolymers coal and kerogen, Meteoritics, 18, 310, 1983.

    Google Scholar 

  • Hirao, N., Y. Baba, T. Sekiguchi, and I. Shimoyama, Reconstruction of X-ray photoelectron spectroscopy system installed at the synchrotron soft X-ray beamline, JAEA-Tech, 039, 2006.

    Google Scholar 

  • Hohenberg, C. M., N. Thonnard, and A. Meshik, Active capture and anomalous adsorption: new mechanisms for the incorporation of heavy noble gases, Meteorit. Planet. Sci., 37, 257–267, 2002.

    Article  Google Scholar 

  • Huss, G. R. and R. S. Lewis, Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins, Meteoritics, 29, 791–810, 1994a.

    Article  Google Scholar 

  • Huss, G. R. and R. S. Lewis, Noble gases in presolar diamonds II: Component abundances reflect thermal processing, Meteoritics, 29, 811–829, 1994b.

    Article  Google Scholar 

  • Huss, G. R. and R. S. Lewis, Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type, Geochim. Cosmochim. Acta, 59, 115–160, 1995.

    Article  Google Scholar 

  • Huss, G. R., R. S. Lewis, and S. Hemkin, The “normal planetary” noble gas component in primitive chondrites: Compositions, carrier and metamorphic history, Geochim. Cosmochim. Acta, 60, 3311–3340, 1996.

    Article  Google Scholar 

  • Kastner, J., H. Kuzmany, L. Palmetshofer, P. Bauer, and G. Stingeder, Doping of fullerenes by ion implantation, Nucl. Instr. Methods Phys. Res. B, 80–81, 1456–1459, 1993.

    Article  Google Scholar 

  • Lacerda, R. G., L. R. Tessler, M. C. dos Santos, P. Hammer, F. Alvarez, and F. C. Marques, EXAFS study of noble gases implanted in highly stressed amorphous carbon films, J. Non-Crystalline Solids, 299–302, 805–809, 2002.

    Article  Google Scholar 

  • Lewis, R. S., B. Srinivasan, and E. Anders, Host phase of a strange xenon component in Allende, Science, 190, 1251–1262, 1975.

    Article  Google Scholar 

  • Marrocchi, Y., S. Derenne, B. Marty, and F. Robert, Interlayer trapping of noble gases in insoluble organic matter of primitive meteorites, Earth Planet. Sci. Lett., 236, 569–578, 2005a.

    Article  Google Scholar 

  • Marrocchi, Y., A. Razafitianamaharavo, L. J. Michot, and B. Marty, Low pressure adsorption of Ar, Kr and Xe on carbonaceous materials (kerogen and carbon blacks), ferrihydrite and montmorillonite: implications for the trapping of noble gases onto meteoritic matter, Geochim. Cosmochim. Acta, 69, 2419–2430, 2005b.

    Article  Google Scholar 

  • Matsuda, J. and K. Nagao, Noble gas emplacement in shock-produced diamonds, Geochim. Cosmochim. Acta, 53, 1117–1121, 1989.

    Article  Google Scholar 

  • Matsuda, J. and T. Yoshida, The plasma model for the origin of the phase Q: an experimental approach and the comparison with the labyrinth model, Meteorit. Planet. Sci., 36, A127, 2001.

    Google Scholar 

  • Matsuda, J., K. Fukunaga, and K. Ito, Noble gas studies in vapor-growth diamonds: Comparison with shock-produced diamonds and the origin of diamonds in ureilites, Geochim. Cosmochim. Acta, 55, 2011–2023, 1991.

    Article  Google Scholar 

  • Murae, T., FT-IR spectroscopic studies of major organic matter in carbonaceous chondrites using microscopic technique and comparison with terrestrial kerogen, Proc. NIPR Symp. Antarct. Meteorites, 7, 262–274, 1994.

    Google Scholar 

  • Nakamura, T., K. Nagao, and N. Takaoka, Microdistribution of primordial noble gases in CM chondrites determined by in situ laser microprobe analysis: Decipherment of nebular processes, Geochim. Cosmochim. Acta, 63, 241–255, 1999.

    Article  Google Scholar 

  • Ott, U., R. Mack, and S. Chang, Noble-gas-rich separates from the Allende meteorite, Geochim. Cosmochim. Acta, 45, 1751–1788, 1981.

    Article  Google Scholar 

  • Ozima, M., R. Wieler, B. Marty, and F. A. Podosek, Comparative studies of solar, Q-gases and terrestrial noble gases, and implications on the evolution of the solar nebula, Geochim. Cosmochim. Acta, 62, 301–314, 1998.

    Article  Google Scholar 

  • Remusat, L., S. Derenne, and F. Robert, Conventional and TMAH assisted pyrolysis on the insoluble organic matter of Orgueil and Murchison (abstract #1230), 34th Lunar and Planetary Science Conference, CDROM, 2003.

    Google Scholar 

  • Seah, M. P. and W. A. Dench, Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal., 1, 2–11, 1979.

    Article  Google Scholar 

  • Scofield, J. H., Theoretical photoionization cross sections from 1 to 1500 keV, Lawrence Livermore Laboratory, University of California, Livermore California, USA, 1973.

    Book  Google Scholar 

  • van Krevelen, D.W., Graphical-statistical method for the study of structure and reaction processes of coal, Fuel, 29, 269–284, 1950.

    Google Scholar 

  • Wacker, J. F., Laboratory simulation of meteoritic noble gases: III. Sorption of neon, argon, krypton and xenon on carbon. Elemental fractionation, Geochim. Cosmochim. Acta, 53, 1421–1433, 1989.

    Article  Google Scholar 

  • Wacker, J. F., M. G. Zadnik, and E. Anders, Laboratory simulation of meteoritic noble gases: I. Sorption of xenon on carbon: trapping experiments, Geochim. Cosmochim. Acta, 49, 1035–1048, 1985.

    Article  Google Scholar 

  • Watanabe, S., N. S. Ishioka, T. Sekine, A. Osa, M. Koizumi, H. Shimomura, K. Yoshikawa, and H. Muramatsu, Production of endohedral 133Xe-fullerene by ion implantation, J. Radioanal. Nucl. Chem., 255, 495–498, 2003a.

    Article  Google Scholar 

  • Watanabe, S., N. S. Ishioka, H. Shimomura, H. Muramatsu, and T. Sekine, Dose dependence of the production yield of endohedral 133Xe-fullerene by ion implantation, Nucl. Instr. Methods Phys. Res. B, 206, 399–402, 2003b.

    Article  Google Scholar 

  • Wieler, R., E. Anders, H. Baur, R. S. Lewis, and P. Signer, Noble gases in ‘phase Q’: Closed-system etching of an Allende residue, Geochim. Cosmochim. Acta, 55, 1709–1722, 1991.

    Article  Google Scholar 

  • Zadnik, M. G., J. F. Wacker, and R. S. Lewis, Laboratory simulation of meteoritic noble gases: II. Sorption of xenon on carbon: etching and heating experiments, Geochim. Cosmochim. Acta, 49, 1049–1059, 1985.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takahito Osawa.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Osawa, T., Hirao, N., Takeda, N. et al. Argon retentivity of carbonaceous materials: feasibility of kerogen as a carrier phase of Q-noble gases in primitive meteorites. Earth Planet Sp 61, 1003–1011 (2009). https://doi.org/10.1186/BF03352950

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352950

Key words

  • Noble gas
  • XAS
  • XPS
  • kerogen
  • phase Q
  • ion implantation
  • diamond
  • graphite