Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Argon retentivity of carbonaceous materials: feasibility of kerogen as a carrier phase of Q-noble gases in primitive meteorites


Extremely large amounts of heavy noble gases are concentrated in phase Q, which seems to be a carbonaceous phase analogous to terrestrial Type III kerogen. Phase Q must have very high noble gas retentivity based on the presence of such extremely large amounts of heavy noble gases in a very minor fraction of the meteorite. To verify that kerogen is a carrier phase of Q-noble gases, X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) using synchrotron radiation were carried on for kerogens (coals) and carbon allotropes that had been bombarded by 3-keV Ar ions, and the Ar retentivities of the two materials were compared. This comparison of the estimated Ar concentrations in the target materials revealed that carbon allotropes (graphite, fullerene, carbon nanotube, and diamond) have a much higher Ar retentivity than kerogens. This unexpected result clearly shows that the terrestrial kerogens tested in our study are not suitable as a carrier phase of Ar and, consequently, that phase Q may not be similar to the terrestrial kerogen tested. If heavy noble gases are really concentrated in carbonaceous components of primitive meteorites, phase Q may have a more ordered structure than terrestrial kerogen based on the fact that the greatest difference between terrestrial kerogen and carbon allotropes is the degree of order of the molecular structure.


  1. Anders, E., Noble gases in meteorites: evidence for presolar matter and superheavy elements, Proc. R. Soc. A, 374, 207–238, 1981.

  2. Baba, Y., H. Yamamoto, and T. A. Sasaki, Trapping of low-energy xenon ions in surfaces of transition metals, Nucl. Instr. Methods. B, 63, 391–394, 1992a.

  3. Baba, Y., H. Yamamoto, and T. A. Sasaki, XPS and XAES measurements on trapped rare gases in transition metals, Nucl. Instr. Method. B, 66, 424–432, 1992b.

  4. Behar, F. and M. Vandenbroucke, Chemical modeling of kerogen, Org. Geochem., 11, 15–24, 1987.

  5. Berger, M. J., J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, and D. S. Zucker, XCOM: Photon Cross Sections Database, Web Version 1.3, available at, 2005.

  6. Busemann, H. and O. Eugster, The trapped noble gas component in achondrites, Meteorit. Planet. Sci., 37, 1865–1891, 2002.

  7. Busemann, H., H. Baur, and R. Wieler, Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system etching, Meteorit. Planet. Sci., 35, 949–973, 2000.

  8. Durand, B. and J. C. Monin, Kerogen, edited by B. Durand, 113 pp., Éditions Technip, Paris, 1980.

  9. Espitalié, J., M. Madec, and B. Tissot, Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration, Bull. Am. Assoc. Pet. Geol., 64, 59–66, 1980.

  10. Fan, X., C. Liu, T. Yu, Y. Shi, J. Li, M. Ye, H. Guo, N. Xiao, Y. Pen, and F. Cai, Preparation and ion implantation of solid C60 films, Surf. Coat. Tech., 65, 219–223, 1994.

  11. Ferrante, R. F., M. H. Moore, J. A. Nuth III, and T. Smith, Laboratory studies of catalysis of CO to organics on grain analogs, Icarus, 145, 297–300, 2000.

  12. Frick, U., Noble gas fractionation during synthesis of carbonaceous matter, Proc. Lunar Planet. Sci. Conf., 1961–1973, 1979.

  13. Fukunaga, K., J. Matsuda, K. Nagao, M. Miyamoto, and K. Ito, Noble-gas enrichment in vapour-growth diamonds and the origin of diamonds in ureilites, Nature, 328, 141–143, 1987.

  14. Gardinier, A., S. Derenne, F. Robert, F. Behar, C. Largeau, and J. Maquet, Solid state CP/MAS 13C NMR of the insoluble organic matter of the Orgueil and Murchinson meteorites: Quantitative study, Earth Planet. Sci. Lett., 184, 9–21, 2000.

  15. Greene, J. P., J. Nemanich, G. E. Thomas, and S. L. Schiel, Noble gas sputtering calculations using TRIM, Nucl. Instr. Methods. A, 397, 91–98, 1997.

  16. Hahn, J. R. and H. Kang, Spatial distribution of defects generated by hyperthermal Ar+ impact onto graphite, Surface Sci., 446, L77–L82, 2000.

  17. Hartman-Stroup, C., The effect of organic matter type and organic carbon content on Rock-Eval hydrogen index in oil shales and source rocks, Org. Geochem., 13, 1051–1060, 1987.

  18. Hayatsu, R., R. G. Scott, and R. E. Winane, Comparative structural study of meteoritic polymer with terrestrial geopolymers coal and kerogen, Meteoritics, 18, 310, 1983.

  19. Hirao, N., Y. Baba, T. Sekiguchi, and I. Shimoyama, Reconstruction of X-ray photoelectron spectroscopy system installed at the synchrotron soft X-ray beamline, JAEA-Tech, 039, 2006.

  20. Hohenberg, C. M., N. Thonnard, and A. Meshik, Active capture and anomalous adsorption: new mechanisms for the incorporation of heavy noble gases, Meteorit. Planet. Sci., 37, 257–267, 2002.

  21. Huss, G. R. and R. S. Lewis, Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins, Meteoritics, 29, 791–810, 1994a.

  22. Huss, G. R. and R. S. Lewis, Noble gases in presolar diamonds II: Component abundances reflect thermal processing, Meteoritics, 29, 811–829, 1994b.

  23. Huss, G. R. and R. S. Lewis, Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type, Geochim. Cosmochim. Acta, 59, 115–160, 1995.

  24. Huss, G. R., R. S. Lewis, and S. Hemkin, The “normal planetary” noble gas component in primitive chondrites: Compositions, carrier and metamorphic history, Geochim. Cosmochim. Acta, 60, 3311–3340, 1996.

  25. Kastner, J., H. Kuzmany, L. Palmetshofer, P. Bauer, and G. Stingeder, Doping of fullerenes by ion implantation, Nucl. Instr. Methods Phys. Res. B, 80–81, 1456–1459, 1993.

  26. Lacerda, R. G., L. R. Tessler, M. C. dos Santos, P. Hammer, F. Alvarez, and F. C. Marques, EXAFS study of noble gases implanted in highly stressed amorphous carbon films, J. Non-Crystalline Solids, 299–302, 805–809, 2002.

  27. Lewis, R. S., B. Srinivasan, and E. Anders, Host phase of a strange xenon component in Allende, Science, 190, 1251–1262, 1975.

  28. Marrocchi, Y., S. Derenne, B. Marty, and F. Robert, Interlayer trapping of noble gases in insoluble organic matter of primitive meteorites, Earth Planet. Sci. Lett., 236, 569–578, 2005a.

  29. Marrocchi, Y., A. Razafitianamaharavo, L. J. Michot, and B. Marty, Low pressure adsorption of Ar, Kr and Xe on carbonaceous materials (kerogen and carbon blacks), ferrihydrite and montmorillonite: implications for the trapping of noble gases onto meteoritic matter, Geochim. Cosmochim. Acta, 69, 2419–2430, 2005b.

  30. Matsuda, J. and K. Nagao, Noble gas emplacement in shock-produced diamonds, Geochim. Cosmochim. Acta, 53, 1117–1121, 1989.

  31. Matsuda, J. and T. Yoshida, The plasma model for the origin of the phase Q: an experimental approach and the comparison with the labyrinth model, Meteorit. Planet. Sci., 36, A127, 2001.

  32. Matsuda, J., K. Fukunaga, and K. Ito, Noble gas studies in vapor-growth diamonds: Comparison with shock-produced diamonds and the origin of diamonds in ureilites, Geochim. Cosmochim. Acta, 55, 2011–2023, 1991.

  33. Murae, T., FT-IR spectroscopic studies of major organic matter in carbonaceous chondrites using microscopic technique and comparison with terrestrial kerogen, Proc. NIPR Symp. Antarct. Meteorites, 7, 262–274, 1994.

  34. Nakamura, T., K. Nagao, and N. Takaoka, Microdistribution of primordial noble gases in CM chondrites determined by in situ laser microprobe analysis: Decipherment of nebular processes, Geochim. Cosmochim. Acta, 63, 241–255, 1999.

  35. Ott, U., R. Mack, and S. Chang, Noble-gas-rich separates from the Allende meteorite, Geochim. Cosmochim. Acta, 45, 1751–1788, 1981.

  36. Ozima, M., R. Wieler, B. Marty, and F. A. Podosek, Comparative studies of solar, Q-gases and terrestrial noble gases, and implications on the evolution of the solar nebula, Geochim. Cosmochim. Acta, 62, 301–314, 1998.

  37. Remusat, L., S. Derenne, and F. Robert, Conventional and TMAH assisted pyrolysis on the insoluble organic matter of Orgueil and Murchison (abstract #1230), 34th Lunar and Planetary Science Conference, CDROM, 2003.

  38. Seah, M. P. and W. A. Dench, Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal., 1, 2–11, 1979.

  39. Scofield, J. H., Theoretical photoionization cross sections from 1 to 1500 keV, Lawrence Livermore Laboratory, University of California, Livermore California, USA, 1973.

  40. van Krevelen, D.W., Graphical-statistical method for the study of structure and reaction processes of coal, Fuel, 29, 269–284, 1950.

  41. Wacker, J. F., Laboratory simulation of meteoritic noble gases: III. Sorption of neon, argon, krypton and xenon on carbon. Elemental fractionation, Geochim. Cosmochim. Acta, 53, 1421–1433, 1989.

  42. Wacker, J. F., M. G. Zadnik, and E. Anders, Laboratory simulation of meteoritic noble gases: I. Sorption of xenon on carbon: trapping experiments, Geochim. Cosmochim. Acta, 49, 1035–1048, 1985.

  43. Watanabe, S., N. S. Ishioka, T. Sekine, A. Osa, M. Koizumi, H. Shimomura, K. Yoshikawa, and H. Muramatsu, Production of endohedral 133Xe-fullerene by ion implantation, J. Radioanal. Nucl. Chem., 255, 495–498, 2003a.

  44. Watanabe, S., N. S. Ishioka, H. Shimomura, H. Muramatsu, and T. Sekine, Dose dependence of the production yield of endohedral 133Xe-fullerene by ion implantation, Nucl. Instr. Methods Phys. Res. B, 206, 399–402, 2003b.

  45. Wieler, R., E. Anders, H. Baur, R. S. Lewis, and P. Signer, Noble gases in ‘phase Q’: Closed-system etching of an Allende residue, Geochim. Cosmochim. Acta, 55, 1709–1722, 1991.

  46. Zadnik, M. G., J. F. Wacker, and R. S. Lewis, Laboratory simulation of meteoritic noble gases: II. Sorption of xenon on carbon: etching and heating experiments, Geochim. Cosmochim. Acta, 49, 1049–1059, 1985.

Download references

Author information



Corresponding author

Correspondence to Takahito Osawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Osawa, T., Hirao, N., Takeda, N. et al. Argon retentivity of carbonaceous materials: feasibility of kerogen as a carrier phase of Q-noble gases in primitive meteorites. Earth Planet Sp 61, 1003–1011 (2009).

Download citation

Key words

  • Noble gas
  • XAS
  • XPS
  • kerogen
  • phase Q
  • ion implantation
  • diamond
  • graphite