Skip to main content

Advertisement

Monitoring the global-scale winter anomaly of total electron contents using GPS data

Article metrics

  • 290 Accesses

  • 10 Citations

Abstract

The winter anomaly phenomenon of Total Electron Contents (TEC) at latitudes 15°–60°N and 15°S–60°S is presented using GPS carrier-phase data obtained from GPS stations during 2002. The correlation between the [O/N2] ratio estimated using the NRLMSISE-00 atmospheric model and the TEC winter anomaly is also investigated. The numerical results show that the TEC winter anomaly in different regions of the world tends to be dominated by different factors. In North America, the TEC winter anomaly is strongly affected by the magnetospheric processes in high latitudes and the [O/N2] ratio. In the Euro-Africa and Russia-Asia regions, the TEC winter anomaly depends mainly on the [O/N2] ratio at the latitude band of 30°–60°N, and the extent of the TEC winter anomaly gradually decreases from 60°N to 30°N. The extent of the TEC winter anomaly increases at the latitude band of 15°–30°N due to the influence of the meridional neutral wind and the seasonal changes of the subsolar point. However, the TEC winter anomaly was not observed in southern hemisphere in 2002. The TEC equinoctial asymmetries in the northern and southern hemisphere are also presented using GPS TEC values collected in March and September 2002.

References

  1. Appleton, E. V., Temperature changes in the higher atmosphere, Nature, 136, 52–53, 1935.

  2. Bailey, G. J., J. F. Vickrey, and W. E. Swartz, Topside ionosphere above Arecibo during summer at sunspot minimum and the influence of an interhemispheric flow of thermal protons, J. Geophys. Res., 87(A9), 7557–7568, 1982.

  3. Balan, N. and G. J. Bailey, Modelling studies of equatorial plasma fountain and equatorial anomaly, Adv. Space Res., 18(3), 107–116, 1996.

  4. Balan, N. and Y. Otsuka, Equatorial asymmetries in the ionosphere and thermosphere observed by the MU radar, J. Geophys. Res., 103(A5), 9481–9495, 1998.

  5. Balan, N., G. J. Bailey, R. J. Moffett, Y. Z. Su, and J. E. Titheridge, Modelling studies of the conjungate-hemisphere differences in ionospheric ionization at equatorial anomaly latitudes, J. Atmos. Terr. Phys., 57(3), 279–292, 1995.

  6. Balan, N., G. J. Bailey, M. A. Abdu, K. I. Oyama, P. G. Richards, J. MacDougall, and I. S. Batista, Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer, J. Geophys. Res., 102(A2), 2047–2056, 1997a.

  7. Balan, N., Y Otsuka, and S. Fukao, New aspects in the annual variation of the ionosphere observed by the MU radar, Geophys. Res. Lett., 24(18), 2287–2290, 1997b.

  8. Ducan, R. A., F-region seasonal and magnetic storm behaviour, J. Atmos. Terr. Phys., 31, 59–70, 1969.

  9. Ennis, A. E., G. J. Bailey, and R. J. Moffett, Vibrational nitrogen concentration in the ionosphere and its dependence on season and solar cycle, Ann. Geophys., 13, 1164–1171, 1995.

  10. Huo, X. L., Y B. Yuan, J. K. Ou, D. B. Wen, and X. W. Luo, The diurnal variations, semiannual and winter anomalies of the ionospheric TEC based on GPS data in China, Prog. Nat. Sci., 15(1), 56–60, 2005.

  11. Jenkins, B., G. J. Bailey, A. E. Ennis, and R. J. Moffett, The effect of vibra-tionally excited nitrogen on the low-latitude ionosphere, Ann. Geophys., 15, 1422–1428, 1991.

  12. Jin, S. and J.-U. Park, GPS ionospheric tomography: A comparison with the IRI-2001 model over South Korea, Earth Planets Space, 59(4), 287–292, 2007.

  13. Kawamura, S., N. Balan, Y. Otsuka, and S. Fukao, Annual and semiannual variations of the midlatitude ionosphere under low solar activity, J. Geophys. Res., 107(A8), 1166, 10.1029/2001JA000267, 2002.

  14. King, G. A. M., The dissociation of oxygen and high level circulation in the atmosphere, J. Atmos. Terr. Phys., 29, 1529–1539, 1964.

  15. Kotake, N., Y Otsuka, T. Ogawa, T. Tsugawa, and A. Saito, Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California, Earth Planets Space, 59(2), 95–102, 2007.

  16. Lin, C.-H., J.-Y Liu, H.-F Tsai, and C.-Z. Cheng, Variations in the equatorial ionization anomaly peaks in the Western Pacific region during the geomagnetic storms of April 6 and July 15, 2000, Earth Planets Space, 59(5), 401–405, 2007.

  17. Mannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, and U. J. Lindqwister, A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci., 33(3), 565–601, 1998.

  18. Millward, G. H., H. Rishbeth, T. J. Fuller-Rowell, A. D. Aylward, S. Que-gan, and R. J. Moffett, Ionospheric F2 layer seasonal and semiannual variations, J. Geophys. Res., 101(A3), 5149–5156, 1996.

  19. Namgaladze, A. A., A. N. Namgaladze, and M. A. Volkov, Numerical modeling of the thermospheric and ionospheric effects of magneto-spheric processes in the cusp region, Ann. Geophys., 14, 1343–1355, 1997.

  20. Pavlov, A. V. and N. M. Pavlova, Cause of the mid-latitude NmF2 winter anomaly at solar maximum, J. Atmos. Terr. Phys., 67, 862–877, 2005.

  21. Picone, M., A. E. Hedin, D. P. Drob, and A. C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430, 2002.

  22. Richards, P. G. and D. G. Torr, A factor of 2 reduction in theoretical F2 peak electron density due to enhanced vibrational excitation of N2 in summerat solar maximum, J. Geophys. Res., 91, 11331–11336, 1986.

  23. Rishbeth, H., How the thermospheric circulation affects the ionospheric F2-layer, J. Atmos. Sol. Terr. Phy., 60, 1385–1402, 1998.

  24. Rishbeth, H. and C. S. G. K. Setty, The F-layer at sunrise, J. Atmos. Terr. Phys., 21, 263–276, 1961.

  25. Rishbeth, H., I. C. F. Müller-Wodarg, L. Zou, T. J. Fuller-Rowell, G. H. Millward, R. J. Moffett, D. W. Idenden, and A. D. Aylward, Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion, Ann. Geophys., 18, 945–956, 2000.

  26. Schaer, S., Mapping and predicting the earth’s ionosphere using the global positioning system, Ph.D. Thesis, Astronomisches Institute of University Bern, Switzerland, 1999.

  27. Shepherd, G. S., Dayside cleft auroral and its ionospheric effects, Rev. Geophys. Space Phys., 12, 2017–2033, 1979.

  28. Su, Y. Z., G. J. Bailey, and K. I. Oyama, Annual and seasonal variations in the low-latitude topside ionosphere, Ann. Geophys., 16, 974–985, 1998.

  29. Torr, M. R. and D. G. Torr, The seasonal behavior of the F2 layer of the ionosphere, J. Atmos. Terr. Phys., 35, 2237–2251, 1973.

  30. Tsai, H., J. Liu, W. Tsai, and C. Liu, Seasonal variations of the ionospheric total electron content in Asia equatorial anomaly regions, J. Geophys. Res., 106(A12), 30363–30369, 2001.

  31. Yuan, Y. B. and J. K. Ou, Preliminary results and analyses of using IGS GPS data to determine global ionospheric TEC, Prog. Nat. Sci., 13(6), 446–450, 2003.

  32. Yuan, Y. B., X. L. Huo, and J. K. Ou, Models and methods for precise determination of ionospheric delay using GPS data, Prog. Nat. Sci., 17(2), 187–196, 2007.

  33. Walk, G. O., J. H. K. Ma, and E. Golton, The equatorial ionospheric anomaly in eletrcon content from solar minimum to solar maximum for South East Asia, Ann. Geophys., 12, 195–209, 1994.

Download references

Author information

Correspondence to X. L. Huo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huo, X.L., Yuan, Y.B., Ou, J.K. et al. Monitoring the global-scale winter anomaly of total electron contents using GPS data. Earth Planet Sp 61, 1019–1024 (2009) doi:10.1186/BF03352952

Download citation

Key words

  • Total Electron Content (TEC)
  • winter anomaly
  • Global Positioning System (GPS)