Skip to main content

Scale factor mitigating non-compliance of double-frequency altimeter measurements of the ionospheric electron content over the oceans with GPS-TEC maps

Abstract

This paper presents results from a study of GPS total electron content (TEC) grid maps and ionospheric electron content (IEC) over the oceans delivered by the TOPEX/Jason satellites during half a solar cycle (July 2001 to December 2008). The IEC data are averaged and binned at latitudes from 60°S to 60°N in steps of 5°±2.5°, at longitudes from 180°W to 180°E in steps of 15°±7.5°, and for 0–23 h UT in steps of 1±0.5 h UT. The ratio of monthly averaged TEC/IEC over the oceans from the observations was compared to the reference model ratio of TECm/IECm obtained using the plasmaspheric model augmented with the International Reference Ionosphere. By definition, TEC should exceed IEC by the plasmaspheric electron content (PEC) contribution at the altitude range from 1336 km (TOPEX orbit) to 20,200 km (GPS orbit). However, as solar activity tends to the minimum, we found that IEC estimates systematically exceed those of GPS TEC. An empirical scale factor was derived in terms of the smoothed sunspot number, and this factor reduced the systematic excess of the TOPEX/Jason-derived IEC over the GPS TEC by a factor of 1.5 towards the solar minimum. This factor was tested with observations made at the solar minimum and revealed that the plasmaspheric electron content to be a residual of the GPS TEC and modified TOPEX/Jason IEC.

References

  • Arikan, F. and H. Raemer, A methodology for modeling and simulation of radar clutter and multipath, J. Electromagn. Waves Applic., 10(2), 215–242, 1996.

    Article  Google Scholar 

  • Arikan, F. and N. Vural, Simulation of sea clutter at various frequency bands, J. Electromagn. Waves Applic., 19(4), 529–542, 2005.

    Article  Google Scholar 

  • Arikan, F., C. B. Erol, and O. Arikan, Regularized estimation of vertical total electron content from Global Positioning System data, J. Geophys. Res.—Space Phys., 108(A12), 1469–1480, 2003.

    Article  Google Scholar 

  • Arikan, F., C. B. Erol, and O. Arikan, Regularized estimation of VTEC from GPS data for a desired time period, Radio Sci., 39(6), RS6012, 2004.

    Article  Google Scholar 

  • Arikan, F., H. Nayir, U. Sezen, and O. Arikan, Estimation of single station interfrequency receiver bias using GPS-TEC, Radio Sci., 43, RS4004, 2008.

    Article  Google Scholar 

  • Azpilicueta, F. and C. Brunini, Analysis of the bias between TOPEX and GPS vTEC, J. Geod., 81, 121–127, 2009.

    Article  Google Scholar 

  • Bilitza, D., B. W. Reinisch, S. M. Radicella, S. Pulinets, T. Gulyaeva, and L. Triskova, Improvements of the IRI model for the topside electron density profile, Radio Sci., 41(5), RS5S15, 2006.

    Article  Google Scholar 

  • Brunini, C., A. Meza, and W. Bosch, Spatial and temporal variability of the TEC between TOPEX and GPS, J. Geod., 79(4–5), 175–188, 2005.

    Article  Google Scholar 

  • Carpenter, D. L. and C. G. Park, On what ionospheric workers should know about the plasmapause-plasmasphere, Rev. Geophys. Space Phys., 11, 133–154, 1973.

    Article  Google Scholar 

  • Chasovitin, Yu. K., T. L. Gulyaeva, M. G. Deminov, and S. E. Ivanova, Russian standard model of ionosphere (SMI), COST251TD(98)005, Proc. of COST251, RAL, Chilton, UK, 161–172, 1998.

    Google Scholar 

  • Codrescu, M. V., S. E. Palo, X. Zhang, T. J. Fuller-Rowell, and C. Poppe, TEC climatology derived from TOPEX/Poseidon measurements, J. At-mos. Sol.-Terr. Phys., 61, 281–298, 1999.

    Article  Google Scholar 

  • Delay, S. H. and P. H. Doherty, A decade of measurements from the TOPEX/Poseidon Mission, Proc. BSS, 2004, Trieste, Italy.

    Google Scholar 

  • Fu, L. L., E. J. Christensen, and C. A. Yamarone Jr, TOPEX/Poseidon mission overview, J. Geophys. Res., 99, 24369–24381, 1994.

    Article  Google Scholar 

  • Gallagher, D. L., P. D. Craven, and R. H. Comfort, Global core plasma model, J. Geophys. Res., 105(A8), 18, 819–18, 833, 2000.

  • Gulyaeva, T. L. and J. E. Titheridge, Advanced specification of electron density and temperature in the IRI ionosphere-plasmasphere model, Adv. Space Res., 38(11), 2587–2595, 2006.

    Article  Google Scholar 

  • Gulyaeva, T. L., X. Huang, and B. W. Reinisch, Plasmaspheric extension of topside electron density profile, Adv. Space Res., 29(6), 825–831, 2002.

    Article  Google Scholar 

  • Iijima, B. A., I. L. Harris, C. M. Ho, U. J. Lindqwister, A. J. Mannucci, X. Pi, M. J. Reyes, L. C. Sparks, and B. D. Wilson, Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data, J. Atmos. Sol.-Terr. Phys., 61, 1205–1218, 1999.

    Article  Google Scholar 

  • Jee, G., R. W. Schunk, and L. Scherliess, The analysis of TEC data from TOPEX/Poseidon mission, J. Geophys. Res., 109, A01301, 2004.

    Google Scholar 

  • Jee, G., R. W. Schunk, and L. Scherliess, Comparison of IRI-2001 with TOPEX-TEC measurements, J. Atmos. Sol.-Terr. Phys., 67, 365–380, 2005.

    Article  Google Scholar 

  • Klobuchar, J. A., Real-time ionospheric science: The new reality, Radio Sci., 32(5), 1943–1952, 1997.

    Article  Google Scholar 

  • Komjathy, A., R. B. Langley, and D. Bilitza, Ingesting GPS-derived TEC data into the International Reference Ionosphere for single frequency radar altimeter ionospheric delay corrections, Adv. Space Res., 22(6), 793–801, 1998.

    Article  Google Scholar 

  • Kotova, G. A., The Earth’s plasmasphere: state of studies, Geomagn. Aeron., 47(4), 409–422, 2007.

    Article  Google Scholar 

  • Manju, G., S. Ravindran, C. V. Devasia, S. V. Thampi, and R. Sridharan, Plasmaspheric electron content (PEC) over low latitude regions around the magnetic equator in the Indian sector during different geophysical conditions, J. Atmos. Sol.-Terr. Phys., 70, 1066–1073, 2008.

    Article  Google Scholar 

  • Mannucci, A. J., B. D. Willson, D. N. Yuan, C. M. Ho, U. J. Lindquister, and T. F. Runge, A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci., 33(3), 565–582, 1998.

    Article  Google Scholar 

  • Mazzella, Jr., A. J., E. A. Holland, A. M. Andreasen, C. C. Andreasen, and G. S. Rao, Autonomous estimation of plasmasphere content using GPS measurements, Radio Sci., 37(6), 4–1/4–5, 2002.

    Article  Google Scholar 

  • Nayir, H., F. Arikan, O. Arikan, and C. B. Erol, Total electron content estimation with Reg-Est, J. Geophys. Res.—Space Phys., 112, A11313, 2007.

    Article  Google Scholar 

  • Orus, R., M. Hernandez-Pajares, J. M. Huan, J. Sanz, and M. Garcia-Fernandez, Performance of different TEC models to provide GPS ionospheric corrections, J. Atmos. Sol.-Terr. Phys., 64, 2055–2062, 2002.

    Article  Google Scholar 

  • Reinisch, B. W., P. Nsumei, X. Huang, and D. Bilitza, Modelling the F2 topside and plasmasphere for IRI using IMAGE/RPI and ISIS data, Adv. Space Res., 39(5), 731–738, 2007.

    Article  Google Scholar 

  • Robinson, T. R. and R. Beard, A comparison between electron content deduced from IRI and that measured by the TOPEX dual frequency altimeter, Adv. Space Res., 16(1), 155–158, 1995.

    Article  Google Scholar 

  • Schreiner, W. S., R. E. Markin, and G. H. Born, Correction for single frequency altimeter measurements for ionosphere delay, IEEE Trans. Geospace Remote Sensing, 35(2), 271–277, 1997.

    Article  Google Scholar 

  • Shaer, S., W. Guriner, and J. Feltens, IONEX: The IONosphere Map Exchange Format. Version 1. ftp://igscb.jpl.nasa.gov/igscb/data/format/ionex1.ps, 1998.

    Google Scholar 

  • Skolnik, M., Radar Handbook, 2nd Ed, McGraw Hill, Singapore, 1991.

    Google Scholar 

  • Smith, D. A., E. A. Araujo-Pradere, C. Minter, and T. Fuller-Rowell, A comprehensive evaluation of the errors inherent in the use of a two-dimensional shell for modeling the ionosphere, Radio Sci., 43, RS6008, 2008.

    Article  Google Scholar 

  • Soicher, H., Response of electrons in ionosphere and plasmasphere to magnetic storms, Nature, 259, 33–35, 1976.

    Article  Google Scholar 

  • Todorova, S., T. Hobiger, and H. Schuh, Using the Global Navigation Satellite System and satellite altimetry for combined global ionospheric maps, Adv. Space Res., 42(4), 727–736, doi:10.1016/j.asr.2007.08.024, 2008.

    Article  Google Scholar 

  • Webb, P. A. and E. A. Essex, A dynamic global model of the plasmasphere, J. Atmos. Sol.-Terr. Phys., 66(12), 1057–1073, doi:10.1016/j.jastp. 2004.04.001, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Gulyaeva.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Gulyaeva, T.L., Arikan, F. & Delay, S.H. Scale factor mitigating non-compliance of double-frequency altimeter measurements of the ionospheric electron content over the oceans with GPS-TEC maps. Earth Planet Sp 61, 1103–1109 (2009). https://doi.org/10.1186/BF03352960

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352960

Key-words