Skip to main content


Fuzzy mathematical model for the analysis of geomagnetic field data

Article metrics

  • 306 Accesses

  • 3 Citations


The Indian network of magnetometers provides an opportunity to examine the pattern of geomagnetic field variations during magnetic storms. In this study, fuzzy transitive closure analysis, which is a powerful technique for pattern recognition, has been employed. The pattern of variation differs at the nonequatorial, equatorial and the observatory situated nearer to the geomagnetic Sq focus. The results of the analysis are compared with those of classical cluster analysis. The comparison confirms the validity of applying this model for the analysis of geomagnetic storms. The superiority of fuzzy concepts over the conventional method and the analytical techniques are presented here.


  1. Alex, S. and D. R. K. Rao, Magnetospheric contribution to low latitude Sq variations, J. Geomag. Geoelectr., 47, 599–606, 1995.

  2. Anderberg, M. R., Cluster Analysis for Applications, Academic Press, New York, 1973.

  3. Bezdek, J. C., G. Biswas, and L.Y. Huang, Transitive closures of fuzzy thesauri for information and retrieval systems, Int. J. Man-Machine Studies, 25, 343–356, 1986.

  4. Campbell, W. H., Introduction to Geomagnetic Fields, Cambridge University Press, Cambridge, 1997.

  5. Chandra, H., G. D. Vyas, B. M. Pathan, and D. R. K. Rao, Spectral characteristics of magnetic storm-induced F-region scintillations extending into daytime, J. Atmos. Terr. Phys., 57, 1273–1283, 1995.

  6. Dekkers, M. J., C. G. Langereis, S. P. Vriend, P. J. M. van Santvoort, and G. J. de Lange, Fuzzy c-means cluster analysis of early diagenetic effects on natural remanent magnetization acquisition in a 1.1 Myr piston core from the Central Mediterranean, Phys. Earth Planet. Inter., 85, 155–171, 1994.

  7. Friedman, M. and A. Kandel, Introduction to Pattern Recognition-Statistical, Structural, Neural and Fuzzy Logic Approaches, Imperial College Press, London, 1999.

  8. Jain, A. R., Geomagnetic storm effects on ionospheric total electron content in Indian zone, Indian J. Radio Space Phys., 7, 111–118, 1978.

  9. Jain, A. R. and N. S. Sastri, The H amplitude of Sudden Commencements of Magnetic Storms at Sabhawala (Dehra Dun), J. Geophys., 45, 101–106, 1978.

  10. Johnson, R. A. and D. W. Wichern, Applied Multivariate Statistical Analysis, Pearson Education, Inc. Pearson Prentice Hall, NJ, USA, 2006.

  11. Klir, G. J. and T. A. Folger, Fuzzy Sets, Uncertainty and Information, Prentice hall of India Private Ltd., New Delhi, 2000.

  12. Klir, G. J. and B. Yuvan, Fuzzy Sets and Fuzzy Logic, Theory and Applications, Prentice Hall of India Private Ltd., New Delhi, 1997.

  13. Kruiver, P. P., Y. S. Kok, M. J. Dekkers, C. G. Langereis, and C. Laj, A pseudo-Thellier relative palaeo intensity record, and rock magnetic and geochemical parameters in relation to climate during the last 276 kys in the Azores region, Geophys. J. Int., 136(3), 757–770, 1999.

  14. Parkinson, W. D., Introduction to Geomagnetism, Scottish Academic Press, Edinburgh and London, 1983.

  15. Rastogi, R. G. and A. R. Patil, On certain aspects of daily variation of geomagnetic field at low latitudes, J. Geomag. Geoelectr., 44, 495–503, 1992.

  16. Rastogi, R. G., N. D. Kaushika, and N. B. Trivedi, Some relations between the sudden commencements at the equatorial electrojet, J. Atmos. Terr. Phys., 26, 771–776, 1964.

  17. Rastogi, R. G., D. R. K. Rao, S. Alex, B. M. Pathan, and T. S. Sastry, An intense SFE and SSC event in geomagnetic H, Y and Z fields at the Indian chain of observatories, Ann. Geophys., 15, 1301–1308, 1997.

  18. Sridharan, M. and A. M. S. Ramasamy, Multidimensional scaling technique for analysis magnetic storms at Indian observatories, Proc. Ind. Acad. Sci., 111, 459–465, 2002.

  19. Sridharan, M. and N. Gururajan, Fractal behavior of geomagnetic storm on 29–31 October 2003, Int. J. Mat. Sci., 54, 303–311, 2006.

  20. Srivastava, B. J., H. Abbas, D. R. K. Rao, and B. M. Pathan, Extended main phase of some sudden commencement great geomagnetic storms with double SSCs, J. Atmos. Terr. Phys., 61, 993–1000, 1999.

  21. Sugiura, M., The solar diurnal variation in the amplitude of sudden commencements of magnetic storms at the geomagnetic equator, J. Geophys. Res., 58, 558–559, 1953.

  22. Tsurutani, B. T., W. D. Gonzalez, G. S. Lakhina, and S. Alex, The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108, 2002.

  23. Valdivia, J. A., A. S. Sharma, and K. Papadopoulos, Prediction of magnetic storms by nonlinear methods, Geophys. Res. Lett., 23(21), 2899–2902, 1996.

  24. Valdivia, J. A., D. Vassiliadis, and A. Klimas, Spatiotemporal activity of magnetic storms, J. Geophys. Res., 104, 12239–12250, 1999.

  25. Vassiliadis, D., A. J. Klimas, J. A. Valdivia, and D. N. Baker, The Dst geomagnetic response as a function of storm phase and amplitude and the solar wind electric field, J. Geophys. Res., 104, 24957–24976, 1999.

  26. Zadeh, L. A., Fuzzy sets, Inform. Control, 8, 338–353, 1965.

Download references

Author information

Correspondence to M. Sridharan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sridharan, M. Fuzzy mathematical model for the analysis of geomagnetic field data. Earth Planet Sp 61, 1169–1177 (2009) doi:10.1186/BF03352968

Download citation

Key words

  • Fuzzy logic
  • transitive closure
  • geomagnetic storm
  • geomagnetic Sq
  • EEJ current