Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Earthquake hazard assessment in seismogenic systems through Markovian artificial neural network estimation: an application to the Japan area

abstract

An earlier work (Herrera et al.: Earth Planets Space, 58, 973–979, 2006) introduced two new methods for seismic hazard evaluation in a geographic area with distinct, but related, seismogenic regions. These two methods are based on modeling the transition probabilities of states, i.e. patterns of presence or absence of large earthquakes, in the regions, as a Markov chain. This modeling is, in turn, based on a straightforward counting of observed transitions between states. The direct method obtains transition probabilities among states that include events with magnitudes MM r , where M r is a specified threshold magnitude. The mixed method evaluates probabilities for transitions from a state with MM m r to a state with MM M r , where M m r < M M r . Both methods gave very good results when applied to the Japan area, with the mixed method giving the best results and an improved magnitude range. In the work presented here, we propose other methods that use the learning capacity of an elementary neuronal network (perceptron) to characterize the Markovian behavior of the system; these neuronal methods, direct and mixed, gave results 7 and 6% better than the counting methods, respectively. Method performance is measured using grading functions that evaluate a tradeoff between positive and negative aspects of performance. This procedure results in a normalized grade being assigned that allows comparisons among different models and methods.

References

  1. Bishop, C. M., Neural Networks for Pattern Recognition, 488 pp., Calen-don Press Oxford, UK, 1995.

    Google Scholar 

  2. Brillinger, D., Seismic risk assessment: some statistical aspects, Earthq. Predict. Res., 1, 183–195, 1982.

    Google Scholar 

  3. Chao, L. C. and M. J. Skibniewski, Estimating construction productivity: Neural network-based approach, J. Comput. Civil Eng., 8(2), 234–251, 1994.

    Article  Google Scholar 

  4. Dowla, F. U., S. R. Taylor, and R. W. Anderson, Seismic discrimination with artificial neural networks: preliminary results with regional spectral data, Bull. Seismol. Soc. Am., 80, 1346–1373, 1990.

    Google Scholar 

  5. Fedotov, S., Regularities of the distribution of strong earthquakes in Kamchatka, the Kurile Islands, and northeast Japan, Trudy Isnt. Fiz. Zemli. Acad. Nauk. SSSR, 36, 66–94, 1965.

    Google Scholar 

  6. García-Fernández, M. and J. J. Egozcue, Seismic hazard assessment in TERESA test areas based on a Bayesian technique, Nat. Haz., 2(3–4), 249–265, 1989.

    Article  Google Scholar 

  7. Goldman, S., Information Theory, 385 pp., Dover Publs. Inc., USA, 1953.

    Google Scholar 

  8. Gutenberg, B. and C. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185–188, 1944.

    Google Scholar 

  9. Herrera, C., F A. Nava, and C. Lomnitz, Time-dependent earthquake hazard evaluation in seismogenic systems using mixed Markov Chains: An application to the Japan area, Earth Planets Space, 58, 973–979, 2006.

    Article  Google Scholar 

  10. Hirata, N., Past, current and future of Japanese national program for earthquake prediction research, Earth Planets Space, 56, xliii–l, 2004.

    Article  Google Scholar 

  11. Ito, T., S. Yoshioka, and S. Miyazaki, Interplate coupling in southwest Japan deduced from inversion analysis of GPS data, Phys. Earth Planet. Inter., 115, 17–34, 1999.

    Article  Google Scholar 

  12. Ito, T., S. Yoshioka, and S. Miyazaki, Interplate coupling in northeast Japan deduced from inversion analysis of GPS data, Earth Planet. Sci. Lett., 176, 117–130, 2000.

    Article  Google Scholar 

  13. Kagan, Y and D. Jackson, Seismic gap hypothesis: Ten years after, J. Geophys. Res., 96, 21419–21431, 1991.

    Article  Google Scholar 

  14. Kanamori, H., The energy in grat earthquakes, J. Geophys. Res., 82, 2981–2987, 1977.

    Article  Google Scholar 

  15. Karunanithi, N., W. J. Grenney, D. Whitley, and K. Bovee, Neural networks for river flow prediction, J. Comput. Civil Eng., 8, 201–220, 1994.

    Article  Google Scholar 

  16. Kashyap, R. L., Speaker recognition from an unknown utterance and speaker-speech interaction, IEEE Trans on Acoustics, Speech and Signal Processing, 24, 481–488, 1976.

    Article  Google Scholar 

  17. Katsumata, K. and M. Kasahara, Precursory seismic quiescence before the 1994 Kurile Earthquake (Mw = 8.3) revealed by three independent seismic catalogs, Pure Appl. Geophys., 155, 443–470, 1999.

    Article  Google Scholar 

  18. Lomnitz, C. and F. Nava, The predictive power of seismic gaps, Bull. Seismol. Soc. Am., 73, 1815–1824, 1983.

    Google Scholar 

  19. McCann, W. R., S. P. Nishenko, S. P. Sykes, and J. Krause, Seismic gap and plate tectonics: seismic potential for major boundaries, Pure Appl. Geophys., 117, 1082–1147, 1979.

    Article  Google Scholar 

  20. Mcllraith, A. L. and H. C. Card, Birdsong recognition using backpropa-gation and multivariate statistics, IEEE Trans on Signal Processing, 45, 2740–2748, 1997.

    Article  Google Scholar 

  21. Mogi, K., Migration of seismic activity, Bull. Earthq. Res. Inst., 46, 53–74, 1968.

    Google Scholar 

  22. Mogi, K., Earthquake Prediction, 355 pp., Academic Press, Japan Inc., 1985.

    Google Scholar 

  23. Nava, F. A., C. Herrera, J. Frez, and E. Glowacka, Seismic hazard evaluation using Markov chains; Application to the Japan area, Pure Appl. Geophys., 162, 1347–1366, 2005.

    Article  Google Scholar 

  24. Patwardahan, A. S., R. B. Kulkarni, and D. Tocher, A semi Markov model for characterizing recurrence of great earthquakes, Bull. Seismol. Soc. Am., 70, 323–347, 1980.

    Google Scholar 

  25. Reid, H. F., The mechanism of the Earthquake, The California Earthquake of April 18, 1906, in Report of the State Earthquake Investigation Commission, edited by Carnegie Institution, 2, 16–18, Washington D.C., 1910.

    Google Scholar 

  26. Richter, C., Elementary Seismology, 521 pp., W H. Freeman, San Francisco, 1958.

    Google Scholar 

  27. Rosenblatt, F., The perceptron: A probabilistic model for information storage and organization in the brain, Psychological Rev., 65, 386–408, 1958 (Reprinted in Anderson & Rosenfeld, 92–114, 1988).

    Article  Google Scholar 

  28. Rosenblatt, F., Principles of Neurodynamics, 215 pp., Spartan, New York, 1962.

    Google Scholar 

  29. Rüttener, E., J. J. Egozcue, D. Mayer-Rosa, and S. Mueller, Bayesian estimation of seismic hazard for two sites in Switzerland, Nat. Haz., 14, 165–178, 1996.

    Article  Google Scholar 

  30. Shimazaki, K., Intra-plate seismicity and inter-plate earthquakes: historical activity in southwest Japan, Tectonophysics, 33, 33–42, 1976.

    Article  Google Scholar 

  31. Shimazaki, K. and T. Nakata, Time predictable recurrence model for large earthquakes, Geophys. Res. Lett., 7, 279–282, 1980.

    Article  Google Scholar 

  32. Thatcher, W. and J. B. Rundle, A viscoleastic coupling model for the cyclic deformation due to periodically repeated earthquakes at subduction zones, J. Geophys. Res., 89, 7631–7640, 1984.

    Article  Google Scholar 

  33. Utsu, T., Estimation of parameters for recurrence models of earthquakes, Bull. Earthq. Res. Inst., Univ. Tokyo, 59, 53–56, 1984.

    Google Scholar 

  34. Wyss, M., K. Shimazaki, and T. Urabe, Quantitative mapping of a precursory seismic quiescence to the Izu-Oshima 1990 (M6.5) earthquake, Japan, Geophys. J. Int., 127, 735–743, 2007.

    Article  Google Scholar 

  35. Zhao, Y. and K. Takano, An artificial neural network approach for broadband seismic phase picking, Bull. Seismol. Soc. Am., 89, 670–680, 1999.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Herrera.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herrera, C., Nava, F.A. Earthquake hazard assessment in seismogenic systems through Markovian artificial neural network estimation: an application to the Japan area. Earth Planet Sp 61, 1223–1232 (2009). https://doi.org/10.1186/BF03352975

Download citation

Key words

  • Probabilistic seismic hazard assessment
  • neural networks
  • Markov chains