Skip to main content

Mantle-driven geodynamo features—effects of post-Perovskite phase transition

Abstract

Exploring the impact of the heterogeneous lower mantle on the geodynamo requires knowledge of the heat flux anomaly across the core-mantle boundary. Most studies so far used a purely thermal interpretation of seismic shear wave anomalies to assign heterogeneous heat flux boundary conditions on numerical dynamo models, ignoring phase transition or compositional origins. A recent study of mantle convection (Nakagawa and Tackley, 2008) provides guidelines to include such non-thermal effects. Here we construct maps of heat flux across the core-mantle boundary based on a lower mantle tomography model (Masters et al, 2000) with a combined thermal and post-Perovskite phase transition interpretation. We impose these patterns as outer boundary conditions on numerical dynamo simulations and study the impact of accounting for post-Perovskite effects on the long-term time-average properties of the dynamo. We then compare our results with geophysical observations. We find in all cases that surface downwellings associated with cyclones concentrate intense non-axisymmetric magnetic flux at high-latitudes, the surface flow contains a large anticlockwise vortex at mid-latitudes of the southern hemisphere, and the inner boundary buoyancy flux is dominated by a Y 02 pattern. Boundary-driven time-average surface flow with some equatorial asymmetry is organized in the shell by quasi-axial convective rolls that extract more buoyancy from low-latitudes of the inner-boundary. These positive inner boundary buoyancy flux structures are found at low-latitudes of the northern hemisphere, in some places due to cyclonic flow at mid-latitudes of the southern hemisphere connecting with higher latitude cyclonic flow in the northern hemisphere. Accounting for post-Perovskite effects improves the recovery of several geodynamo observations, including the Atlantic/Pacific hemispherical dichotomy in core flow activity, the single intense paleomagnetic field structure in the southern hemisphere, and possibly the m = 1 dominant mode of inner-core seismic heterogeneity.

References

  • Amit, H. and U. Christensen, Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation, Geophys. J. Int., 175, 913–924, 2008.

    Article  Google Scholar 

  • Amit, H. and P. Olson, Helical core flow from geomagnetic secular variation, Phys. Earth Planet. Inter., 147, 1–25, 2004.

    Article  Google Scholar 

  • Amit, H. and P. Olson, Time-average and time-dependent parts of core flow, Phys. Earth Planet. Inter., 155, 120–139, 2006.

    Article  Google Scholar 

  • Amit, H., J. Aubert, G. Hulot, and P. Olson, A simple model for mantle-driven flow at the top of Earth’s core, Earth Planets Space, 60, 845–854, 2008.

    Article  Google Scholar 

  • Aubert, J., H. Amit, and G. Hulot, Detecting thermal boundary control in surface flows from numerical dynamos, Phys. Earth Planet. Inter., 160, 143–156, 2007.

    Article  Google Scholar 

  • Aubert, J., H. Amit, G. Hulot, and P. Olson, Thermo-chemical flows couple Earth’s inner core growth to mantle heterogeneity, Nature, 454, 758–761, 2008.

    Article  Google Scholar 

  • Bloxham, J., Time-independent and time-dependent behaviour of high-latitude flux bundles at the core-mantle boundary, Geophys. Res. Lett., 29, doi:10.1029/2001gl014543, 2002.

  • Bloxham, J. and D. Gubbins, Thermal core-mantle interactions, Nature, 325, 511–513, 1987.

    Article  Google Scholar 

  • Busse, F., A model of the geodynamo, Geophys. J. R. Astron. Soc., 42, 437–459, 1975.

    Article  Google Scholar 

  • Carlut, J. and V. Courtillot, How complex is the time-averaged geomagnetic field over the last 5 million years?, Geophys. J. Int., 134, 527–544, 1998.

    Article  Google Scholar 

  • Christensen, U. and P. Olson, Secular variation in numerical geodynamo models with lateral variations of boundary heat flow, Phys. Earth Planet. Inter., 138, 39–54, 2003.

    Article  Google Scholar 

  • Constable, C., Non-dipole field, in Encyclopedia of Geomagnetism and Paleomagnetism, edited by Gubbins, D. and E. Herrera-Bervera, 1054 pp, Springer, The Netherlands, 2007.

    Google Scholar 

  • Creager, K., Anisotropy of the inner core from differential travel-times of the phases PKP and PKIKP, Nature, 356, 309–314, 1992.

    Article  Google Scholar 

  • Deschamps, F., J. Trampert, and P. Tackley, Thermo-chemical structure of the lower mantle: seismological evidence and consequences for geody-namics, in Superplume: Beyond Plate Tectonics, edited by Yuen, D., S. Maruyama, S. Karato, and B. Windely, 568 pp, Springer, The Netherlands, 2007.

    Google Scholar 

  • Glatzmaier, G., R. Coe, L. Hongre, and P. Roberts, The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals, Nature, 401, 885–890, 1999.

    Article  Google Scholar 

  • Gubbins, D. and S. Gibbons, Low Pacific secular variation, in Timescales of the paleomagnetic field, edited by Channell, J., D. Kent, W. Lowrie, and J. Meert, 320 pp, Geophysical monograph series Vol. 145, Washington D.C., 2004.

    Google Scholar 

  • Gubbins, D., A. Willis, and B. Sreenivasan, Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure, Phys. Earth Planet. Inter., 162, 256–260, 2007.

    Article  Google Scholar 

  • Holme, R., Large-scale flow in the core, in Treatise on Geophysics Vol. 8, edited by Olson, P., 376 pp, Elsevier Science, London, 2007.

    Google Scholar 

  • Hulot, G., C. Eymin, B. Langlais, M. Mandea, and N. Olsen, Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data, Nature, 416, 620–623, 2002.

    Article  Google Scholar 

  • Iitaka, T., K. Hirose, K. Kawamura, and M. Murakami, The elasticity of the MgSiO3 post-Perovskite phase in the Earth’s lowermost mantle, Nature, 430, 442–445, 2004.

    Article  Google Scholar 

  • Jackson, A., Time-dependency of tangentially geostrophic core surface motions, Phys. Earth Planet. Inter., 103, 293–311, 1997.

    Article  Google Scholar 

  • Jackson, A., A. Jonkers, and M. Walker, Four centuries of geomagnetic secular variation from historical records, Phil. Trans. R. Soc. Lond., A358, 957–990, 2000.

    Article  Google Scholar 

  • Kelly, P. and D. Gubbins, The geomagnetic field over the past 5 million years, Geophys. J. Int., 128, 315–330, 1997.

    Article  Google Scholar 

  • Labrosse, S., J.-W. Hernlund, and N. Coltice, A crystallizing dense magma ocean at the base of the Earth’s mantle, Nature, 450, 866–869, 2007.

    Article  Google Scholar 

  • Lay, T., E.-J. Garnero, and Q. Williams, Partial melting in a thermo-chemical boundary layer at the base of the mantle, Phys. Earth Planet. Inter, 146, 441–467, 2004.

    Article  Google Scholar 

  • Lay, T., J. Hernlund, E. Garnero, and M. Thorne, A post-Perovskite lens and D″ heat flux beneath the central Pacific, Science, 314, 1272–1276, 2006.

    Article  Google Scholar 

  • Le Bars, M. and A. Davaille, Whole layer convection in a heterogeneous planetary mantle, J. Geophys. Res., 109, Bo3403, 2004.

    Article  Google Scholar 

  • Masters, G., S. Johnson, G. Laske, and H. Bolton, A shear-velocity model of the mantle, Philos.Trans. R. Soc. Lond. Ser., A354, 1385–1411, 1996.

    Article  Google Scholar 

  • Masters, G., G. Laske, H. Bolton, and A. Dziewonski, The relative behavior of shear velocity, bulk sound velocity, and compressional velocity in the mantle: Implications for chemical and thermal structure, in Earth’s deep interior, edited by Karato, S., A. Forte, R. Liebermann, G. Masters, and L. Stixrude, 297 pp, AGU monograph Vol. 117, Washington D.C., 2000.

    Google Scholar 

  • Matsumoto, N., A. Namiki, and I. Sumita, influence of a basal thermal anomaly on mantle convection, Phys. Earth Planet. Inter., 157, 208–222, 2006.

    Article  Google Scholar 

  • Morelli, A., A. Dziewonski, and J. Woodhouse, Anisotropy of the inner core inferred from PKIKP travel-times, Geophys. Res. Lett., 13, 1545–1548, 1986.

    Article  Google Scholar 

  • Murakami, M., K. Hirose, N. Sata, Y. Ohishi, and K. Kawamura, Post-Perovskite phase transition in MgSiO3, Science, 304, 855–858, 2004.

    Article  Google Scholar 

  • Murakami, M., S. Sinogeikin, J. Bass, and J. Li, Sound velocity of MgSiO3 Perovskite to mbar pressure, Earth Planet. Sci. Lett., 256, 47–54, 2007.

    Article  Google Scholar 

  • Nakagawa, T. and P. Tackley, Lateral variations in CMB heat flux and deep mantle seismic velocity caused by a thermal-chemical-phase boundary layer in 3D spherical convection, Earth Planet. Sci. Lett., 271, 348–358, 2008.

    Article  Google Scholar 

  • Ni, S., E. Tan, M. Gurnis, and D. Helmberger, Sharp sides to the African super plume, Science, 296, 1850–1852, 2002.

    Article  Google Scholar 

  • Niu, F. and L. Wen, Hemispherical variations in seismic velocity at the top of the Earth’s inner core, Nature, 410, 1081–1084, 2001.

    Article  Google Scholar 

  • Oganov, A. and S. Ono, Theoretical and experimental evidence for a post-Perovskite phase of MgSiO3 in Earth’s D″ layer, Nature, 430, 445–448, 2004.

    Article  Google Scholar 

  • Olson, P. and U. Christensen, The time averaged magnetic field in numerical dynamos with nonuniform boundary heat flow, Geophys. J. Int., 151, 809–823, 2002.

    Article  Google Scholar 

  • Olson, P., U. Christensen, and G. Glatzmaier, Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration, J. Geophys. Res., 104, 10383–10404, 1999.

    Article  Google Scholar 

  • Olson, P., P. Driscoll, and H. Amit, Dipole collapse and reversal precursors in a numerical dynamo, Phys. Earth Planet. Inter., 173, 121–140, 2009.

    Article  Google Scholar 

  • Ritsema, J., A. McNamara, and A. Bull, Tomographics filtering of geo-dynamic models: implications for model interpretation and large-scale mantle structure, J. Geophys. Res., 112, doi:10.1029/2005GL023887, 2007.

  • Song, X. and D. Helmberger, Anisotropy of Earth’s inner-core, Geophys. Res. Lett., 20, 2591–2594, 1993.

    Article  Google Scholar 

  • Stackhouse, S., J. Brodholt, and G. Price, Elastic anisotropy of FeSiO3 end-member of the Perovskite and post-Perovskite phase, Geophys. Res. Lett., 33, L01304, doi:10.1029/2005GL023887, 2006.

    Article  Google Scholar 

  • Su, W.-J. and A. Dziewonski, Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle, Phys. Earth Planet. Inter., 100, 135–156, 1997.

    Article  Google Scholar 

  • Su, W.-J., R. Woodward, and A. Dziewonski, Degree-12 model of shear velocity heterogeneity in the mantle, J. Geophys. Res., 99, 6945–6980, 1994.

    Article  Google Scholar 

  • Tackley, P., Strong heterogeneity caused by deep mantle layering, Geochem. Geophys. Geosyst., 3, 1024, 2002.

    Article  Google Scholar 

  • Takahashi, F., M. Matsushima, and Y. Honkura, Scale variability in convection-driven MHD dynamos at low Ekman number, Phys. Earth Planet. Inter, 167, 168–178, 2008a.

    Article  Google Scholar 

  • Takahashi, F, H. Tsunakawa, M. Matsushima, N. Mochizuki, and Y Honkura, Effects of thermally heterogeneous structure in the lowermost mantle on the geomagnetic field strength, Earth Planet. Sci. Lett., 272, 738–746, 2008b.

    Article  Google Scholar 

  • Tanaka, S. and H. Hamaguchi, Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times, J. Geophys. Res., 102, 2925–2938, 1997.

    Article  Google Scholar 

  • Thurber, C. and J. Ritsema, Theory and observations—seismic tomography and inverse methods, in Treatise on Geophysics. Vol. 1, edited by Romanowicz, B. and A. Dziewonski, 872 pp, Elsevier Science, London, 2007.

    Google Scholar 

  • To, A., B. Romanowicz, Y. Capdeville, and N. Takeuchi, 3D effects of sharp boundaries at the borders of the African and Pacific superplumes: observation and modeling, Earth Planet. Sci. Lett., 233, 137–153, 2005.

    Article  Google Scholar 

  • Tsuchiya, T. and J. Tsuchiya, Effect of impurity on the elasticity of Perovskite and post-Perovskite: Velocity contrast across the post-Perovskite transition in (Mg,Fe,Al)(Si,Al)O3, Geophys. Res. Lett., 33, L12S04, 2006.

    Article  Google Scholar 

  • Wentzcovitch, R., T. Tsuchiya, and J. Tsuchiya, MgSiO3 post-Perovskite at D″ conditions, Proc. Nat. Acad. Sci., 103, 543–546, 2006.

    Article  Google Scholar 

  • Wicht, J., Inner-core conductivity in numerical dynamo simulations, Phys. Earth Planet. Inter., 132, 281–302, 2002.

    Article  Google Scholar 

  • Williams, Q. and E.-J. Garnero, Seismic evidence for partial melt at the base of Earth’s mantle, Science, 273, 1528–1530, 1998.

    Article  Google Scholar 

  • Williams, Q., J. Revenaugh, and E.-J. Garnero, A correlation between ultra-low basal velocities in the mantle and hot spots, Science, 281, 546–549, 1996.

    Article  Google Scholar 

  • Willis, A., B. Sreenivasan, and D. Gubbins, Thermal core-mantle interaction: exploring regimes for locked dynamo action, Phys. Earth Planet. Inter., 165, 83–92, 2007.

    Article  Google Scholar 

  • Wookey, J., S. Stackhouse, J.-M. Kendall, J. Brodholt, and G. Price, Efficacy of the post-Perovskite phase as an explanation for lowermost mantle seismic properties, Nature, 438, 1004–1007, 2005.

    Article  Google Scholar 

  • Yoshida, S., I. Sumita, and M. Kumazawa, Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy, J. Geophys. Res., 101, 28085–28103, 1996.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hagay Amit.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Amit, H., Choblet, G. Mantle-driven geodynamo features—effects of post-Perovskite phase transition. Earth Planet Sp 61, 1255–1268 (2009). https://doi.org/10.1186/BF03352978

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352978

Key words

  • Geodynamo
  • mantle tomography
  • post-Perovskite
  • geomagnetic field
  • core flow
  • inner core