Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

In-orbit calibration of the lunar magnetometer onboard SELENE (KAGUYA)

Abstract

The high-sensitivity fluxgate Lunar MAGnetometer (LMAG) is mounted on SELENE (KAGUYA) to investigate the near-surface electromagnetic environment and the evolution of the Moon through magnetic field observation. To avoid possible electromagnetic interferences, a triaxial fluxgate sensor (MGF-S) is installed at the far end of a 12-m-long mast. It is critical for the accurate observation to monitor MGF-S alignment in orbit, and thus we have calibrated the sensor alignment by measuring the known magnetic fields generated by the sensor alignment monitor coil (SAM-C) wound onto the mast canister. In-orbit calibration of the MGF-S alignment was performed twice each revolution during the initial check-out phase of the satellite. It is concluded that there is no systematic difference in the sensor alignment between the day-side and night-side. Applying a new technique based on the Davis-Smith method to the observed magnetic field data when KAGUYA was exposed to the solar wind, a zero offset of each axis was quickly and stably determined every month. As a result, LMAG has been calibrated with an accuracy that is sufficient for detection of the lunar magnetic anomaly at an altitude of 100 km and for high-resolution electron reflectometry.

References

  1. Akaike, H., Likelihood and the Bayes procedure, in Bayesian Statistics, edited by Bernardo, J. M., M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, pp. 143–166, University Press, Valencia, Spain, 1980.

    Google Scholar 

  2. Anderson, B. J., L. J. Zanetti, D. H. Lohr, J. R. Hayes, M. H. Acuña, C. T. Russell, and T. Mulligan, In-flight calibration of the NEAR magnetometer, IEEE Trans. Geosci. Remote Sens., 39, 907–917, 2001.

    Article  Google Scholar 

  3. Anderson, B. J., M. H. Acuña, D. H. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin, The magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417–450, 2007.

    Article  Google Scholar 

  4. Belcher, J. W., A variation of the Davis-Smith method for in-flight determination of spacecraft magnetic fields, J. Geophys. Res., 78, 6480, 1973.

    Article  Google Scholar 

  5. Davis, L. Jr. and E. J. Smith, The in-flight determination of spacecraft magnetic field zeros, Trans. AGU, 49, 257, 1968.

    Google Scholar 

  6. Dougherty, M. K., S. Kellock, D. J. Southwood, A. Balogh, E. J. Smith, B. T. Tsurutani, B. Gerlach, K.-H. Glassmeier, F. Gleim, C. T. Russell, G. Erdos, F. M. Neubauer, and S. W. H. Cowley, The Cassini magnetic field investigation, Space Sci. Rev., 114, 331–383, 2004.

    Article  Google Scholar 

  7. Dyal, P., C.W. Parkin, and W. D. Daily, Structure of the lunar interior from magnetic field measurements, Proc. Lunar Sci. Conf. 7th, 3077–3095, 1976.

    Google Scholar 

  8. Glassmeier, K.-H., I. Richter, A. Diedrich, G. Musmann, U. Auster, U. Motschmann, A. Balogh, C. Carr, E. Cupido, A. Coates, M. Rother, K. Schwingenschuh, K. Szegö, and B. Tsurutani, RPC-MAG The fluxgate magnetometer in the ROSETTA Plasma Consortium, Space Sci. Rev., 128, 649–670, 2007.

    Article  Google Scholar 

  9. Halekas, J. S., D. L. Mitchell, R. P. Lin, S. Frey, L. L. Hood, M. H. Acuña, and A. B. Binder, Mapping of crustal magnetic anomalies on the lunar near side by the Lunar Prospector electron reflectometer, J. Geophys. Res., 106, 27841–27852, 2001.

    Article  Google Scholar 

  10. Hobbs, B. A., The inverse problem of the moon’s electrical conductivity, Earth Planet. Sci. Lett., 17, 380–384, 1973.

    Article  Google Scholar 

  11. Hood, L. L., P. J. Coleman,Jr., and D. E. Wilhelms, The moon: sources of the crustal magnetic anomalies, Science, 204, 53–57, 1979.

    Article  Google Scholar 

  12. Hood, L. L., D. L. Mitchell, R. P. Lin, M. H. Acuña, and A. B. Binder, Initial measurements of lunar induced magnetic dipole moment using Lunar Prospector magnetometer, Geophys. Res. Lett., 26, 2327–2330, 1999.

    Article  Google Scholar 

  13. Hood, L. L., A. Zakharian, J. Halekas, D. L. Mitchell, R. P. Lin, M. H. Acuña, and A. B. Binder, Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data, J. Geophys. Res., 106, 27825–27839, 2001.

    Article  Google Scholar 

  14. Kurata, M., H. Tsunakawa, Y. Saito, H. Shibuya, M. Matsushima, and H. Shimizu, Mini-magnetosphere over the Reiner Gamma magnetic anomaly region on the moon, Geophys. Res. Lett., 32, L24205, doi:10.1029/2005GL024097, 2005.

    Article  Google Scholar 

  15. Leinweber, H. K., C. T. Russell, K. Torkar, T. L. Zhang, and V. Angelopoulos, An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field, Meas. Sci. Technol., 19, 055104, doi:10.1088/0957-0233/19/5/055104, 2008.

    Article  Google Scholar 

  16. Lohr, D. A., L. J. Zanetti, B. J. Anderson, T. A. Potemra, J. R. Hayes, R. E. Gold, R. M. Henshaw, F. F. Mobrey, and D. B. Holland, NEAR magnetic field investigation, instrumentation, spacecraft magnetic and data access, Space Sci. Rev., 82, 255–281, 1997.

    Article  Google Scholar 

  17. Nakazawa, S., Y. Iijima, H. Tsunakawa, M. Matsushima, T. Ono, A. Kumamoto, Y. Kasahara, S. Ikegami, and T. Ishikawa, Electromagnetic compatibility of SELENE (KAGUYA), 26th International Symposium on Space Technology and Science, 2008-k-24, 2008.

    Google Scholar 

  18. Olsen, N., L. Toeffiner-Clausen, T. J. Sabaka, P. Brauer, J. M. G. Merayo, J. L. Joergensen, J.-M. Léger, O. V. Nielsen, F. Primdahl, and T. Risbo, Calibration of the Oersted vector magnetometer, Earth Planets Space, 55, 11–18, 2003.

    Article  Google Scholar 

  19. Russell, C. T., P. J. Coleman,Jr., and B. E. Goldstein, Measurements of the lunar induced magnetic moment in the geomagnetic tail: Evidence for a lunar core?, Proc. Lunar Planet. Sci. Conf. 12th, 831–836, 1981.

    Google Scholar 

  20. Shimizu, H., F. Takahashi, N. Horii, A. Matsuoka, M. Matsushima, H. Shibuya, and H. Tsunakawa, Ground calibration of the high-sensitivity SELENE lunar magnetometer LMAG, Earth Planets Space, 60, 353–363, 2008.

    Article  Google Scholar 

  21. Toyoshima, M., H. Shibuya, M. Matsushima, H. Shimizu, and H. Tsunakawa, Equivalent source mapping of the lunar crustal magnetic field using ABIC, Earth Planets Space, 60, 365–373, 2008.

    Article  Google Scholar 

  22. Tsunakawa, H., Bayesian approach to smoothing palaeomagnetic data using ABIC, Geophys. J. Int., 108, 801–811, 1992.

    Article  Google Scholar 

  23. Tsunakawa, H., Deconvolution method for directions of the postdepositional detrital remanent magnetization using an exponential fixing function, J. Geomag. Geoelectr., 47, 551–576, 1995.

    Article  Google Scholar 

  24. Zhang, T. L., M. Delva, W. Baumjohann, M. Volwerk, C. T. Russell, S. Barabash, M. Balikhin, S. Pope, K.-H. Glassmeier, K. Kudela, C. Wang, Z. Vörös, and W. Zambelli, Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum, Planet. Space Sci., 56, 785–789, 2008.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Futoshi Takahashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takahashi, F., Shimizu, H., Matsushima, M. et al. In-orbit calibration of the lunar magnetometer onboard SELENE (KAGUYA). Earth Planet Sp 61, 1269–1274 (2009). https://doi.org/10.1186/BF03352979

Download citation

Key words

  • SELENE (KAGUYA)
  • lunar magnetic field
  • magnetometer
  • in-orbit calibration