Skip to main content

Nonlinear thermoremanence corrections for Thellier paleointensity experiments on single plagioclase crystals with exsolved magnetites: a case study for the Cretaceous Normal Superchron

Abstract

Single plagioclase paleointensity experiment has been an excellent tool to reliably estimate ancient geomagnetic field intensity. Although transparent plagioclases with magmatic nanophase magnetites have shown their potential for paleointensity estimation, in most cloudy plagioclases with exsolved magnetites, the problems of strong anisotropy as rod-shape magnetites, the hyperbolic tangential saturation of thermoremanence (TRM), and slow cooling of host plutons need to be addressed. In this paper, we propose experimental schemes to address these problems with considerations of error estimation and uncertainty for paleointensity experiments on exsolved magnetite. First, in order to experimentally check the effect of the hyperbolic tangential saturation of TRM, we performed Thellier simulation experiments using laboratory total TRM as simulated natural remanence (NRM). Single cloudy plagioclases were sampled from early Cretaceous granite in the Kitakami massif, Northeast Japan. We designed the experiment where the total TRM and the partial TRMs in the Thellier experiments were acquired under different field intensities. For these experiments, correction for hyperbolic tangential TRM acquisition yielded precise field intensity estimations. Next, Thellier experiments on NRM of the crystals from the same granite were performed as a demonstration of correction schemes for both magnetic anisotropy and hyperbolic tangential TRM acquisition. Precise determination of anisotropy tensor seems to be the major challenge for single plagioclase paleointensity estimation with exsolved magnetite.

References

  1. Armbrustmacher, T. J. and N. G. Banks, Clouded plagioclase in metadolerite dikes, southeastern Bighorn Mountains, Wyoming, Am. Mineral., 59, 656–665, 1974.

    Google Scholar 

  2. Borradaile, G. J. and M. Stupavsky, Anisotropy of magnetic susceptibility: Measurement schemes, Geophys. Res. Lett., 22, 1957–1960, 1995.

    Article  Google Scholar 

  3. Butler, R. F. and S. K. Banerjee, Theoretical single-domain grain-size range in magnetite and titanomagnetite, J. Geophys. Res., 80, 4049–4058, 1975.

    Article  Google Scholar 

  4. Coe, R. S., The determination of paleointensities of the Earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behaviour in Thellier’s method, J. Geomag. Geoelectr., 19, 157–179, 1967.

    Article  Google Scholar 

  5. Coe, R. S., C. S. Grommé, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

    Article  Google Scholar 

  6. Cottrell, R. D. and J. A. Tarduno, Geomagnetic paleointensity derived from single plagioclase crystals, Earth Planet. Sci. Lett., 169, 1–5, 1999.

    Article  Google Scholar 

  7. Cottrell, R. D. and J. A. Tarduno, In search of high-fidelity geomagnetic paleointensities: A comparison of single plagioclase crystal and whole rock Thellier-Thellier analyses, J. Geophys. Res., 105, 23579–23594, 2000.

    Article  Google Scholar 

  8. Dunlop, D. J. and Ö. Ö zdemir, Rock Magnetism, Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, New York, 1997.

    Google Scholar 

  9. Dunlop, D. J., B. Zhang, and Ö. Ö zdemir, Linear and nonlinear Thellier paleointensity behavior of natural minerals, J. Geophys. Res., 110, B01103, doi:10.1029/2004JB003095, 2005.

    Google Scholar 

  10. Feinberg, J. M., G. R. Scott, P. R. Renne, and H.-R. Wenk, Exsolved magnetite inclusions in silicates: Features determining their remanence behavior, Geology, 33(6), 513–516, 2005.

    Article  Google Scholar 

  11. Feinberg, J. M., R. J. Harrison, T. Kasama, R. E. Dunin-Borkowski, G. R. Scott, and P. R. Renne, Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: An electron holography study, J. Geophys. Res., 111, B12S15, doi:10.1029/2006JB004498, 2006.

  12. Granot, R., L. Tauxe, J. S. Gee, and H. Ron, A view into the Cretaceous geomagnetic field from analysis of gabbros and submarine glasses, Earth Planet. Sci. Lett., 256, 1–11, 2007.

    Article  Google Scholar 

  13. Halgedahl, S. L., R. Day, and M. Fuller, The effect of cooling rate on the intensity of weak-field TRM in single-domain magnetite, J. Geophys. Res., 85, 3690–3698, 1980.

    Article  Google Scholar 

  14. Halls, H. C. and B. Zhang, Crustal uplift in the southern Superior Province, Canada, revealed by paleomagnetism, Tectonophysics, 362, 123–136, 2003.

    Article  Google Scholar 

  15. Halls, H. C., A. Kumar, R. Srinivasan, and M. A. Hamilton, Paleomagnetism and U-Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga, Precambrian Res., 155, 47–68, 2007.

    Article  Google Scholar 

  16. Hargraves, R. B. and W. M. Young, Source of stable remanent magnetism in Lambertville diabase, Am. J. Sci., 267, 1161–1167, 1969.

    Article  Google Scholar 

  17. Hext, G. R., The estimation of second-order tensors, with related tests and designs, Biometrika, 50, 353–373, 1963.

    Article  Google Scholar 

  18. Itoh, H. and K. Tokieda, Tilting movement of the Japanese islands inferred from Cretaceous and early Tertiary paleomagnetic data, J. Geomag. Geoelectr., 38, 361–386, 1986.

    Article  Google Scholar 

  19. Japan Nuclear Cycle Development Institute, Final report of Kamaishi insitu experiment, JNC Technical Report, JNC TN7410 99-001, z (in Japanese).

  20. Jelinek, V., Characterization of the magnetic fabric of rocks, Tectonophysics, 79, 63–67, 1981.

    Article  Google Scholar 

  21. Kano, H., Structural petrology of granite plutons (I)—The drop-form plutons in the Kitakami Mountainlands, Japan, J. Mineral. Petrol. Econ. Geol., 73, 97–120, 1978 (in Japanese with English abstract).

    Article  Google Scholar 

  22. Kawano, Y. and Y. Ueda, K-Ar dating on the igneous rocks in Japan (III): granitic rocks in Abukuma massif, J. Mineral. Petrol. Econ. Geol., 54, 162–172, 1965 (in Japanese).

    Article  Google Scholar 

  23. Kirschvink, J. L., The least square line and plane, and the analysis of paleomagnetic data, Geophys. J. R. Astron. Soc., 62, 699–718, 1980.

    Article  Google Scholar 

  24. Kono, M., Y. Hamano, T. Nishitani, and T. Tosha, A new spinner magnetometer: principles and techniques, Geophys. J. R. Astron. Soc., 67, 217–227, 1984.

    Article  Google Scholar 

  25. Levi, S., The effect of magnetite particle size on paleointensity determinaY. tion of the geomagnetic field, Phys. Earth Planet. Inter., 13, 245–259, 1977.

    Article  Google Scholar 

  26. MacGregor, A. G., Clouded feldspars and thermal metamorphism, Min. Mag., 22, 524–538, 1931.

    Article  Google Scholar 

  27. Morgan, G. E. and P. P. K. Smith, Transmission electron microscope and rock magnetic investigations of remanence carriers in a Precambrian metadolerite, Earth Planet. Sci. Lett., 53, 226–240, 1981.

    Article  Google Scholar 

  28. Nabetani, S., Gravimetric study of the emplacement structure of Goyozan granitic pluton in the Kitakami mountainland of Japan, Sci. Rep. Hirosaki Univ., 29, 65–82, 1982.

    Google Scholar 

  29. Nagata, T., Y. Arai, and K. Momose, Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 68, 5277–5281, 1963.

    Article  Google Scholar 

  30. Néel, L., Théorie du trainage magnétique des ferro magnétiques en grains fins avec applications aux terres cuites, Ann. Geophys., 5, 99–137, 1949.

    Google Scholar 

  31. Nye, J. E., Physical Properties of Crystals, 322 pp., Clarendon, Oxford, 1957.

    Google Scholar 

  32. Ohana, T. and T. Kimura, Late Mesozoic phytogeography in eastern Eurasia with special reference to the origin of angiosperms in time and site, J. Geol. Soc. Jpn., 101, 54–69, 1995 (in Japanese with English abstract).

    Article  Google Scholar 

  33. Otofuji, Y., K. Sato, N. Iba, and T. Matsuda, Cenozoic northward translation of the Kitakami massif in northeast Japan: paleomagnetic evidence, Earth Planet. Sci. Lett., 153, 119–132, 1997.

    Article  Google Scholar 

  34. Otofuji, Y., K. Uno, T. Higashi, T. Ichikawa, T. Ueno, T. Mishima, and T. Matsuda, Secondary remanent magnetization carried by magnetite inclusions in silicates: a comparative study of unremagnetized and remagnetized granites, Earth Planet. Sci. Lett., 180, 271–285, 2000.

    Article  Google Scholar 

  35. Poldervaart, A. and A. K. Gilkey, On clouded plagioclase, Am. Mineral., 39, 75–91, 1954.

    Google Scholar 

  36. Sakashima, T., K. Terada, T. Takeshita, and Y. Sano, Large-scale displacement along the Median Tectonic Line, Japan: evidence from SHRIMP zircon U-Pb dating of granites and gneisses from the South Kitakami and paleo-Ryoke belts, J. Asian Earth Sci., 21, 1019–1039, 2003.

    Article  Google Scholar 

  37. Selkin, P. A., J. S. Gee, L. Tauxe, W. P. Meurer, and A. J. Newell, The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex, Earth Planet. Sci. Lett., 183, 403–416, 2000.

    Article  Google Scholar 

  38. Selkin, P. A., J. S. Gee, and L. Tauxe, Nonlinear thermoremanence acquisition and implications for paleointensity data, Earth Planet. Sci. Lett., 256, 81–89, 2007.

    Article  Google Scholar 

  39. Selkin, P. A., J. S. Gee, W. P. Meurer, and S. R. Hemming, Paleointensity record from the 2.7 Ga Stillwater Complex, Montana, Geochem. Geophys. Geosyst., 9, Q12023, doi:10.1029/2008GC001950, 2008.

  40. Sobolev, P., Orientation of acicular iron-ore mineral inclusions in plagioclase, Int. Geol. Rev., 32, 616–628, 1990.

    Article  Google Scholar 

  41. Stacey, F. D. and S. K. Banerjee, The Physical Principles of Rock Magnetism, 195 pp., Elsevier, New York, 1974.

    Google Scholar 

  42. Tanaka, H. and M. Kono, Paleointensities from a Cretaceous basalt platform in inner Mongolia, northeastern China, Phys. Earth Planet. Inter., 133, 147–157, 2002.

    Article  Google Scholar 

  43. Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals, Science, 291, 1779–1783, 2001.

    Article  Google Scholar 

  44. Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, The Cretaceous superchron geodynamo: observations near the tangent cylinder, Proc. Natl. Acad. Sci. U.S.A., 99, 14020–14025, 2002.

    Article  Google Scholar 

  45. Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, The paleomagnetism of single silicate crystals: Recording geomagnetic field strength during mixed polarity intervals, superchrons, and inner core growth, Rev. Geophys., 44, RG1002, doi:10.1029/2005RG000189, 2006.

  46. Tarduno, J. A., R. D. Cottrell, M. K. Watkeys, and D. Bauch, Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals, Nature, 446, 657–660, 2007.

    Article  Google Scholar 

  47. Tauxe, L. and H. Staudigel, Strength of the geomagnetic field in the Cretaceous normal superchron: new data from submarine basaltic glass of the Troodos ophiolite, Geochem. Geophys. Geosyst., 5, doi:10. 1029/2003GC000635, 2004.

  48. Thellier, E. and O. Thellier, Sur l’antensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.

    Google Scholar 

  49. Turcotte, D. L. and G. Schubert, Geodynamics: Application of Continuum Physics to Geological Problems, 450 pp, JohnsonWiley and Sons, New York, 1982.

    Google Scholar 

  50. Usui, Y., N. Nakamura, and T. Yoshida, Magnetite microexsolutions in silicate and magmatic flow fabric of the Goyozan granitoid (NE Japan): significance of partial remanence anisotropy, J. Geophys. Res., 111, B11101, doi:10.1029/2005JB004183, 2006.

  51. Xu, W., J. W. Geissman, R. Van der Voo, and D. R. Peacor, Electron microscopy of iron oxides and implication for the origin of magnetization and rock magnetic properties of Banded Series rock of the Stillwater Complex, Montana, J. Geophys. Res., 102, 12139–12157, 1997.

    Article  Google Scholar 

  52. Zhang, B., A study of crustal uplift along the Kapuskasing zone using 2.45 Ga Matachewan dykes, 153 pp., Ph.D. Thesis, University of Toronto, 1999.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoichi Usui.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Usui, Y., Nakamura, N. Nonlinear thermoremanence corrections for Thellier paleointensity experiments on single plagioclase crystals with exsolved magnetites: a case study for the Cretaceous Normal Superchron. Earth Planet Sp 61, 1327–1337 (2009). https://doi.org/10.1186/BF03352985

Download citation

Key words

  • Paleomagnetism
  • paleointensity
  • exsolved magnetite
  • Cretaceous superchron
  • magnetic anisotropy
  • Thellier experiment
  • granite
  • single crystal paleomagnetism