- Article
- Open Access
- Published:
Nonlinear thermoremanence corrections for Thellier paleointensity experiments on single plagioclase crystals with exsolved magnetites: a case study for the Cretaceous Normal Superchron
Earth, Planets and Space volume 61, pages 1327–1337 (2009)
Abstract
Single plagioclase paleointensity experiment has been an excellent tool to reliably estimate ancient geomagnetic field intensity. Although transparent plagioclases with magmatic nanophase magnetites have shown their potential for paleointensity estimation, in most cloudy plagioclases with exsolved magnetites, the problems of strong anisotropy as rod-shape magnetites, the hyperbolic tangential saturation of thermoremanence (TRM), and slow cooling of host plutons need to be addressed. In this paper, we propose experimental schemes to address these problems with considerations of error estimation and uncertainty for paleointensity experiments on exsolved magnetite. First, in order to experimentally check the effect of the hyperbolic tangential saturation of TRM, we performed Thellier simulation experiments using laboratory total TRM as simulated natural remanence (NRM). Single cloudy plagioclases were sampled from early Cretaceous granite in the Kitakami massif, Northeast Japan. We designed the experiment where the total TRM and the partial TRMs in the Thellier experiments were acquired under different field intensities. For these experiments, correction for hyperbolic tangential TRM acquisition yielded precise field intensity estimations. Next, Thellier experiments on NRM of the crystals from the same granite were performed as a demonstration of correction schemes for both magnetic anisotropy and hyperbolic tangential TRM acquisition. Precise determination of anisotropy tensor seems to be the major challenge for single plagioclase paleointensity estimation with exsolved magnetite.
References
Armbrustmacher, T. J. and N. G. Banks, Clouded plagioclase in metadolerite dikes, southeastern Bighorn Mountains, Wyoming, Am. Mineral., 59, 656–665, 1974.
Borradaile, G. J. and M. Stupavsky, Anisotropy of magnetic susceptibility: Measurement schemes, Geophys. Res. Lett., 22, 1957–1960, 1995.
Butler, R. F. and S. K. Banerjee, Theoretical single-domain grain-size range in magnetite and titanomagnetite, J. Geophys. Res., 80, 4049–4058, 1975.
Coe, R. S., The determination of paleointensities of the Earth’s magnetic field with emphasis on mechanisms which could cause non-ideal behaviour in Thellier’s method, J. Geomag. Geoelectr., 19, 157–179, 1967.
Coe, R. S., C. S. Grommé, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.
Cottrell, R. D. and J. A. Tarduno, Geomagnetic paleointensity derived from single plagioclase crystals, Earth Planet. Sci. Lett., 169, 1–5, 1999.
Cottrell, R. D. and J. A. Tarduno, In search of high-fidelity geomagnetic paleointensities: A comparison of single plagioclase crystal and whole rock Thellier-Thellier analyses, J. Geophys. Res., 105, 23579–23594, 2000.
Dunlop, D. J. and Ö. Ö zdemir, Rock Magnetism, Fundamentals and Frontiers, 573 pp., Cambridge Univ. Press, New York, 1997.
Dunlop, D. J., B. Zhang, and Ö. Ö zdemir, Linear and nonlinear Thellier paleointensity behavior of natural minerals, J. Geophys. Res., 110, B01103, doi:10.1029/2004JB003095, 2005.
Feinberg, J. M., G. R. Scott, P. R. Renne, and H.-R. Wenk, Exsolved magnetite inclusions in silicates: Features determining their remanence behavior, Geology, 33(6), 513–516, 2005.
Feinberg, J. M., R. J. Harrison, T. Kasama, R. E. Dunin-Borkowski, G. R. Scott, and P. R. Renne, Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: An electron holography study, J. Geophys. Res., 111, B12S15, doi:10.1029/2006JB004498, 2006.
Granot, R., L. Tauxe, J. S. Gee, and H. Ron, A view into the Cretaceous geomagnetic field from analysis of gabbros and submarine glasses, Earth Planet. Sci. Lett., 256, 1–11, 2007.
Halgedahl, S. L., R. Day, and M. Fuller, The effect of cooling rate on the intensity of weak-field TRM in single-domain magnetite, J. Geophys. Res., 85, 3690–3698, 1980.
Halls, H. C. and B. Zhang, Crustal uplift in the southern Superior Province, Canada, revealed by paleomagnetism, Tectonophysics, 362, 123–136, 2003.
Halls, H. C., A. Kumar, R. Srinivasan, and M. A. Hamilton, Paleomagnetism and U-Pb geochronology of easterly trending dykes in the Dharwar craton, India: feldspar clouding, radiating dyke swarms and the position of India at 2.37 Ga, Precambrian Res., 155, 47–68, 2007.
Hargraves, R. B. and W. M. Young, Source of stable remanent magnetism in Lambertville diabase, Am. J. Sci., 267, 1161–1167, 1969.
Hext, G. R., The estimation of second-order tensors, with related tests and designs, Biometrika, 50, 353–373, 1963.
Itoh, H. and K. Tokieda, Tilting movement of the Japanese islands inferred from Cretaceous and early Tertiary paleomagnetic data, J. Geomag. Geoelectr., 38, 361–386, 1986.
Japan Nuclear Cycle Development Institute, Final report of Kamaishi insitu experiment, JNC Technical Report, JNC TN7410 99-001, z (in Japanese).
Jelinek, V., Characterization of the magnetic fabric of rocks, Tectonophysics, 79, 63–67, 1981.
Kano, H., Structural petrology of granite plutons (I)—The drop-form plutons in the Kitakami Mountainlands, Japan, J. Mineral. Petrol. Econ. Geol., 73, 97–120, 1978 (in Japanese with English abstract).
Kawano, Y. and Y. Ueda, K-Ar dating on the igneous rocks in Japan (III): granitic rocks in Abukuma massif, J. Mineral. Petrol. Econ. Geol., 54, 162–172, 1965 (in Japanese).
Kirschvink, J. L., The least square line and plane, and the analysis of paleomagnetic data, Geophys. J. R. Astron. Soc., 62, 699–718, 1980.
Kono, M., Y. Hamano, T. Nishitani, and T. Tosha, A new spinner magnetometer: principles and techniques, Geophys. J. R. Astron. Soc., 67, 217–227, 1984.
Levi, S., The effect of magnetite particle size on paleointensity determinaY. tion of the geomagnetic field, Phys. Earth Planet. Inter., 13, 245–259, 1977.
MacGregor, A. G., Clouded feldspars and thermal metamorphism, Min. Mag., 22, 524–538, 1931.
Morgan, G. E. and P. P. K. Smith, Transmission electron microscope and rock magnetic investigations of remanence carriers in a Precambrian metadolerite, Earth Planet. Sci. Lett., 53, 226–240, 1981.
Nabetani, S., Gravimetric study of the emplacement structure of Goyozan granitic pluton in the Kitakami mountainland of Japan, Sci. Rep. Hirosaki Univ., 29, 65–82, 1982.
Nagata, T., Y. Arai, and K. Momose, Secular variation of the geomagnetic total force during the last 5000 years, J. Geophys. Res., 68, 5277–5281, 1963.
Néel, L., Théorie du trainage magnétique des ferro magnétiques en grains fins avec applications aux terres cuites, Ann. Geophys., 5, 99–137, 1949.
Nye, J. E., Physical Properties of Crystals, 322 pp., Clarendon, Oxford, 1957.
Ohana, T. and T. Kimura, Late Mesozoic phytogeography in eastern Eurasia with special reference to the origin of angiosperms in time and site, J. Geol. Soc. Jpn., 101, 54–69, 1995 (in Japanese with English abstract).
Otofuji, Y., K. Sato, N. Iba, and T. Matsuda, Cenozoic northward translation of the Kitakami massif in northeast Japan: paleomagnetic evidence, Earth Planet. Sci. Lett., 153, 119–132, 1997.
Otofuji, Y., K. Uno, T. Higashi, T. Ichikawa, T. Ueno, T. Mishima, and T. Matsuda, Secondary remanent magnetization carried by magnetite inclusions in silicates: a comparative study of unremagnetized and remagnetized granites, Earth Planet. Sci. Lett., 180, 271–285, 2000.
Poldervaart, A. and A. K. Gilkey, On clouded plagioclase, Am. Mineral., 39, 75–91, 1954.
Sakashima, T., K. Terada, T. Takeshita, and Y. Sano, Large-scale displacement along the Median Tectonic Line, Japan: evidence from SHRIMP zircon U-Pb dating of granites and gneisses from the South Kitakami and paleo-Ryoke belts, J. Asian Earth Sci., 21, 1019–1039, 2003.
Selkin, P. A., J. S. Gee, L. Tauxe, W. P. Meurer, and A. J. Newell, The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex, Earth Planet. Sci. Lett., 183, 403–416, 2000.
Selkin, P. A., J. S. Gee, and L. Tauxe, Nonlinear thermoremanence acquisition and implications for paleointensity data, Earth Planet. Sci. Lett., 256, 81–89, 2007.
Selkin, P. A., J. S. Gee, W. P. Meurer, and S. R. Hemming, Paleointensity record from the 2.7 Ga Stillwater Complex, Montana, Geochem. Geophys. Geosyst., 9, Q12023, doi:10.1029/2008GC001950, 2008.
Sobolev, P., Orientation of acicular iron-ore mineral inclusions in plagioclase, Int. Geol. Rev., 32, 616–628, 1990.
Stacey, F. D. and S. K. Banerjee, The Physical Principles of Rock Magnetism, 195 pp., Elsevier, New York, 1974.
Tanaka, H. and M. Kono, Paleointensities from a Cretaceous basalt platform in inner Mongolia, northeastern China, Phys. Earth Planet. Inter., 133, 147–157, 2002.
Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals, Science, 291, 1779–1783, 2001.
Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, The Cretaceous superchron geodynamo: observations near the tangent cylinder, Proc. Natl. Acad. Sci. U.S.A., 99, 14020–14025, 2002.
Tarduno, J. A., R. D. Cottrell, and A. V. Smirnov, The paleomagnetism of single silicate crystals: Recording geomagnetic field strength during mixed polarity intervals, superchrons, and inner core growth, Rev. Geophys., 44, RG1002, doi:10.1029/2005RG000189, 2006.
Tarduno, J. A., R. D. Cottrell, M. K. Watkeys, and D. Bauch, Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals, Nature, 446, 657–660, 2007.
Tauxe, L. and H. Staudigel, Strength of the geomagnetic field in the Cretaceous normal superchron: new data from submarine basaltic glass of the Troodos ophiolite, Geochem. Geophys. Geosyst., 5, doi:10. 1029/2003GC000635, 2004.
Thellier, E. and O. Thellier, Sur l’antensité du champ magnétique terrestre dans le passé historique et géologique, Ann. Geophys., 15, 285–376, 1959.
Turcotte, D. L. and G. Schubert, Geodynamics: Application of Continuum Physics to Geological Problems, 450 pp, JohnsonWiley and Sons, New York, 1982.
Usui, Y., N. Nakamura, and T. Yoshida, Magnetite microexsolutions in silicate and magmatic flow fabric of the Goyozan granitoid (NE Japan): significance of partial remanence anisotropy, J. Geophys. Res., 111, B11101, doi:10.1029/2005JB004183, 2006.
Xu, W., J. W. Geissman, R. Van der Voo, and D. R. Peacor, Electron microscopy of iron oxides and implication for the origin of magnetization and rock magnetic properties of Banded Series rock of the Stillwater Complex, Montana, J. Geophys. Res., 102, 12139–12157, 1997.
Zhang, B., A study of crustal uplift along the Kapuskasing zone using 2.45 Ga Matachewan dykes, 153 pp., Ph.D. Thesis, University of Toronto, 1999.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Usui, Y., Nakamura, N. Nonlinear thermoremanence corrections for Thellier paleointensity experiments on single plagioclase crystals with exsolved magnetites: a case study for the Cretaceous Normal Superchron. Earth Planet Sp 61, 1327–1337 (2009). https://doi.org/10.1186/BF03352985
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03352985
Key words
- Paleomagnetism
- paleointensity
- exsolved magnetite
- Cretaceous superchron
- magnetic anisotropy
- Thellier experiment
- granite
- single crystal paleomagnetism