Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Iodine isotope ratios and halide concentrations in fluids of the Satsuma-Iwojima volcano, Japan


Fumarolic condensates and acid spring waters from Satsuma-Iwojima were sampled between 1993 and 1998 and analyzed for 129I/I and 36Cl/Cl ratios and chloride, bromine, and iodine concentrations. Halogen concentrations suggest that the fumarolic condensates represent mostly magmatic fluids, but that the hot springs are a mixture between magmatic fluids and meteoric water with some presence of seawater. The magmatic component is best preserved in the high-temperature fumaroles collected in 1998 and has a 129I/I ratio of 756 ± 47 × 10−15. This 129I/I ratio yields an iodine age of 15.5 ± 1.5 Ma, which is compatible with derivation of iodine from subducted marine sediments in this region. Ratios of I/Cl, and Br/Cl in the fumaroles also indicate that halides in the magmatic component were mainly derived from marine sediments subducted in the Nankai Trough. These observations suggest that recycling of subducted sediments is an active source of halides in the Satsuma-Iwojima volcanic system. The comparison of 129I/I ratios obtained from fumaroles over the sampling period shows that a recent meteoric component was present in 1993, but not in 1998. This observation might reflect reorganization of the fumarolic system during this period, which expelled the more recent meteoric water from the fumarolic system after 1993. The acid hot springs on the flanks of the volcano maintain a 129I isotopic signature indicative of substantial dilution of magmatic waters by mixing with old meteoric water and seawater. Fumarolic gases and hot spring waters were also analyzed for 36Cl/Cl, but the measured ratios were at, or below, the detection limit of AMS, also indicating that recent contributions of Cl from meteoric water are small in the fumaroles and coastal hot springs.


  1. Broecker, W. S. and T. H. Peng, Tracers in the Sea, Eldigio Press, Columbia Univ., 690 pp., 1982.

  2. Bureau, H., H. Keppler, and N. Métrich, Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry, Earth Planet. Sci. Lett., 183, 51–60, 2000.

  3. Fabryka-Martin, J., H. Bentley, D. Elmore, and P. L. Airey, Natural Iodine-129 as an Environmental Tracer, Geochim. Cosmochim. Acta, 49, 337–347, 1985.

  4. Faure, G., Principles of Isotope Geology, John Wiley and Sons, New York, 589 pp., 1986.

  5. Fehn, U. and G. Snyder, 129I in the Southern Hemisphere: global redistribution of an anthropogenic isotope, Nucl. Inst. Meth. Phys. Res. B, 172, 366–371, 2000.

  6. Fehn, U., E. K. Peters, S. Tullai-Fitzpatrick, P. W. Kubik, P. Sharma, R. T. D. Teng, H. E. Gove, and D. Elmore, 129I and 36Cl concentrations in waters of the eastern Clear Lake area, California: Residence times and source ages of hydrothermal fluids, Geochim. Cosmochim. Acta, 56, 2069–2079, 1992.

  7. Fehn, U., G. T. Snyder, and P. K. Egeberg, Dating of pore fluids with 129I: Relevance for the Origin of Marine Gas Hydrates, Science, 289, 2332–2335, 2000.

  8. Fehn, U., G. T. Snyder, and J. Varekamp, Detection of recycled marine sediment components in crater lake fluids using 129I, J. Volcanol. Geotherm. Res., 2001 (in press).

  9. Fuhrmann, M., S. Bajt, and M. A. A. Schoonen, Sorption of iodine on minerals investigated by X ray absorption near edge structure (XANES) and 125I tracer sorption experiments, App. Geochem., 13, 127–141, 1998.

  10. Gélinas, Y., A. Krushevska, and R. M. Barnes, Determination of Total Iodine in Nutritional and Biological Samples by ICP-MS Following their Combustion within an Oxygen Stream, Anal. Chem., 70, 1021–1025, 1998.

  11. Goff, F. and G. M. McMurtry, Tritium and stable isotopes of magmatic waters, J. Volcanol. Geotherm. Res., 97, 347–396, 2000.

  12. Hedenquist, J. W., F. Goff, F. M. Phillips, D. Elmore, and M. K. Stewart, Groundwater Dilution and Residence Times, and Constraints on Chloride Source in the Mokai Geothermal System, New Zealand, from Chemical, Stable Isotope, Tritium, and 36Cl Data, J. Geophys. Res., 95, 19365–19375, 1990.

  13. Hedenquist, J. W., M. Aoki, and H. Shinohara, Flux of volatiles and ore-forming metals from the magmatic-hydrothermal system of Satsuma Iwojima volcano, Geology, 22, 585–588, 1994.

  14. Kanzaki, T., M. Yoshida, M. Nomura, H. Kakihana, and T. Ozawa, Boron isotopic composition of fumarolic condensates and sassolites from Satsuma Iwo-Jima, Japan, Geochim. Cosmochim. Acta, 43, 1859–1863, 1979.

  15. Kastner, M., H. Elderfield, W. J. Jenkins, J. M. Gieskes, and T. Gamo, Geochemical and isotopic evidence for fluid flow in the Western Nankai subduction zone, Japan, in Hill, I. A., A. Tiara, J. V. Firth et al., Proc. ODP, Sci. Results, 131, 397–407, 1993.

  16. Kastner, M., A. Spivack, and L. Becker, Fluid Composition, Origin, and Flow in the Nankai Trough Subduction Zone (abstract), EOS Trans., V21, G08, 2000.

  17. Matsuo, S., T. Suzuoki, M. Kusakabe, H. Wada, and M. Suzuki, Isotopic and chemical compositions of volcanic gases from Satsuma-Iwojima, Japan, Geochem. J., 8, 165–173, 1974.

  18. Mazor, E., R. Cioni, E. Corassa, M. Fratta, G. Magro, S. Matsuo, H. Hirabayashi, H. Shinohara, M. Martini, G. Piccardi, and P. Cellini-Legittimo, Evolution of fumarolic gases—boundary conditions set by measured parameters: case study at Vulcano, Italy, Bul. Volcanol., 50, 71–85, 1988.

  19. McDonough, W. F. and S.-S. Sun, The composition of the Earth, Chem. Geol., 120, 223–253, 1995.

  20. Moran, J. E., U. Fehn, and J. S. Hanor, Determination of source ages and migration of brines from the U.S. Gulf Coast basin using 129I, Geochim. Cosmochim. Acta, 24, 5055–5069, 1995.

  21. Moran, J. E., U. Fehn, and R. T. D. Teng, Variations in 129I/127I ratios in recent marine sediments: evidence for a fossil organic component, Chem. Geol., 152, 193–203, 1998.

  22. Motyka, R. J., R. J. Poreda, and A. W. A. Jeffrey, Geochemistry, isotopic composition, and origin of fluids emanating from mud volcanoes in the Copper River basin, Alaska, Geochim. Cosmochim. Acta, 53, 29–41, 1989.

  23. Muramatsu, Y. and K. H. Wedepohl, The distribution of iodine in the earth’s crust, Chem. Geol., 147, 201–216, 1998.

  24. Olafsson, G., Calcareous nannofossil biostratigraphy of the Nankai Trough, in Hill., I. A., A. Tiara, J. V. Firth et al., Proc. ODP, Sci. Results, 131, 3–13, 1993.

  25. Rao, U., U. Fehn, R. T. D. Teng, and F. Goff, Sources of chloride in hydrothermal fluids from the Valles caldera, New Mexico: a 36Cl study, J. Volcanol. Geotherm. Res., 72, 59–70, 1996.

  26. Sabu, D. D., On mass-yield of xenon and krypton isotopes in the spontaneous fission of uranium, J. Inorg. Nucl. Chem., 33, 1509–1513, 1971.

  27. Saffer, D. M. and B. Bekins, Fluid budgets at convergent plate margins: Implications for the extent and duration of fault-zone dilation, Geology, 27, 1095–1098, 1999.

  28. Schnetger, B. and Y. Muramatsu, Determination of the halogens, with special reference to iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement, Analyst, 121, 1627–1631, 1996.

  29. Sharma, P., M. Bourgeois, D. Elmore, D. Granger, M. E. Lipschutz, X. Ma, T. Miller, K. Mueller, G. Rickey, P. Simms, and S. Vogt, PRIME Lab AMS performance, upgrades and research applications, Nucl. Inst. Met. Phys. Res. B, 172, 112–123, 2000.

  30. Shinohara, H., W. F. Giggenbach, K. Kazahaya, and J. W. Hedenquist, Geochemistry of volcanic gases and hot springs of Satsuma-Iwojima, Japan: Following Matsuo, Geochem. J., 27, 271–285, 1993.

  31. Shinohara, H., K. Kazahaya, G. Saito, N. Matsushima, and Y. Kawanabe, Degassing activity from Iwodake rhyolitic cone, Satsuma-Iwojima volcano, Japan: Formation of a new degassing vent, 1990–1999, Earth Planet Space, 54, this issue, 175–185, 2002.

  32. Snyder, G. and U. Fehn, I in volcanic fluids: testing for the presence of marine sediments in the Central American volcanic arc, Nucl. Inst. Met. Phys. Res. B, 172, 568–573, 2000.

  33. Snyder, G. T., W. C. Riese, S. G. Franks, J. E. Moran, and U. Fehn, Paleohydrology of a coal-bed methane reservoir: I-129 and Cl-36 results for the Fruitland Formation, CO., Geol. Soc. Am. Abstr., 32, 359, 2000.

  34. Symonds, R. B., W. I. Rose, and M. H. Reed, Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes, Nature, 334, 415–418, 1988.

  35. Symonds, R. B., W. I. Rose, T. M. Gerlach, P. H. Briggs, and R. S. Harmon, Evaluation of gases, condensates, and SO2 emissions from Augustine volcano, Alaska: the degassing of a Cl-rich volcanic system, Bull. Volcanol., 52, 355–374, 1990.

  36. Takaku, Y., T. Shimamura, K. Masuda, and Y. Igarashi, Iodine determination in Natural and Tap Water Using Inductively Coupled Plasma Mass Spectrometry, Anal. Sci., 11, 823–827, 1995.

  37. Taran, Y. M., J. A. Hedenquist, M. A. Korzhinsky, S. I. Tkachenko, and K. I. Schmulovich, Geochemistry of magmatic gases from Kudryavy Volcano, Iturup, Kuril Islands, Geochim. Cosmochim. Acta, 59, 1749–1761, 1995.

  38. Tedesco, D. and J. P. Toutain, Chemistry and Emission Rate of Volatiles from White Island Volcano (New Zealand), Geophys. Res. Lett., 18, 113–116, 1991.

  39. Urrutia, J. and O. Morton, Long-term evolution of subduction zones and the development of wide magmatic arcs, Geofísica Int., 2, 24, 1997.

  40. Van Moort, J. C., Procesos naturales de enriquecimiento de nitratos, sulfatos, cloruros, iodatos, boratos, percloratos y cromatos en los caliches del norte de Chile, Actas-Congreso Geológico Chileno, Universidad del Norte, 3, 674–702, 1985.

  41. Yoshida, M., K. Takahashi, N. Yonehara, T. Ozawa, and I. Iwasaki, The Fluorine, Chlorine, Bromine, and Iodine Contents of Volcanic Rocks in Japan, Bul. Chem. Soc. Japan, 44, 1844–1850, 1971.

  42. You, C.-F., J. M. Gieskes, R. F. Chen, A. Spivack, and T. Gamo, Iodide, bromide, manganese, boron, and dissolved organic carbon in interstitial waters of organic carbon-rich marine sediments: observations in the Nankai accretionary prism, in Hill, I. A., A. Tiara, J. V. Firth et al., Proc. ODP Sci. Results, 131, 165–173, 1993.

Download references

Author information



Corresponding author

Correspondence to G. T. Snyder.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Snyder, G.T., Fehn, U. & Goff, F. Iodine isotope ratios and halide concentrations in fluids of the Satsuma-Iwojima volcano, Japan. Earth Planet Sp 54, 265–273 (2002).

Download citation


  • Marine Sediment
  • Meteoric Water
  • Iodine Concentration
  • Accelerator Mass Spectrometry
  • Nankai Trough