Skip to main content

Thin-sheet electromagnetic inversion modeling using Monte Carlo Markov Chain (MCMC) algorithm

Abstract

The well-known thin-sheet modeling has become a very useful interpretation tool in electromagnetic (EM) methods. The thin-sheet model approximates fairly well 3-D heterogeneities having a limited vertical dimension. This type of approximation leads to amenable computation of EM response of a relatively complex conductivity distribution. This paper describes the integration of thin-sheet forward modeling into an inversion method based on a stochastic Monte Carlo Markov Chain (MCMC) algorithm. Effective exploration of the model space is performed using a biased sampler capable to avoid entrapment to local minima frequently encountered in a such highly nonlinear problem. Results from inversion of synthetic EM data show that the algorithm can reasonably resolve the true structure. Effectiveness and limitations of the proposed inversion method is discussed with reference to the synthetic data inversions.

References

  1. Grandis, H., Imagerie electromagnetique Bayesienne par la simulation d’une chaîne de Markov, Ph.D. thesis, Université Paris 7, 278 pp., 1994.

  2. Grandis, H., Application of magnetotelluric (MT) method in mapping basement structures: Example from Rhine-Saone Transform Zone, France, Indonesian Mining Journal, 3, 16–25, 1997.

    Google Scholar 

  3. Grandis, H., M. Menvielle, and M. Roussignol, Bayesian inversion with Markov chains—I. The magnetotelluric one-dimensional case, Geophys. J. Inter., 138, 757–768, 1999.

    Article  Google Scholar 

  4. Grandis, H., M. Menvielle, and M. Roussignol, Monte Carlo Markov Chains for non-linear inverse problems: an algorithm, Mathematical Geology, 2002 (submitted).

  5. Heerman, D. W., Computer simulation methods in theoretical physics, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  6. Jackson, D. D. and M. Matsu’ura, A bayesian approach to nonlinear inversion, J. Geophys. Res., 90(B1), 581–591, 1985.

    Article  Google Scholar 

  7. Jain, M. K., S. R. K. Iyengar, and R. K. Jain, Numerical methods for scientific and engineering computation, Wiley Eastern, 1987.

  8. Jouanne, V., Application des techniques statistiques bayesiennes à l’inversion de données électromagnétiques, Ph.D. thesis, Université Paris 7, 1991.

  9. McKirdy, D. McA., J. T. Weaver, and T. W. Dawson, Induction in a thin sheet of variable conductance at the surface of a stratified earth—II: Three-dimensional theory, Geophys. J. Roy. astr. Soc., 80, 177–194, 1985.

    Article  Google Scholar 

  10. Menvielle, M., J. C. Rossignol, and P. Tarits, The coast effect in terms of deviated electric currents: a numerical study, Phys. Earth Planet. Inter., 28, 118–128, 1982.

    Article  Google Scholar 

  11. Robert, C., L’analyse Statistique Bayesienne, 393 pp., Economica, Paris, 1992.

    Google Scholar 

  12. Robert, C., Méthodes de Monte Carlo par Chaînes de Markov, 393 pp., Economica, Paris, 1996.

    Google Scholar 

  13. Rothman, D. H., Automatic estimation of large residual statics corrections, Geophysics, 51, 332–346, 1986.

    Article  Google Scholar 

  14. Roussignol, M., V. Jouanne, M. Menvielle, and P. Tarits, Bayesian electromagnetic imaging, in Computer Intensive Methods, edited by W. Hardle and L. Siman, pp. 85–97, Physical Verlag, 1993.

  15. Schott, J.-J., M. Roussignol, M. Menvielle, and F. R. Nomenjahanary, Bayesian inversion with Markov chains—II. The one-dimensional DC multilayer case, Geophys. J. Inter., 138, 769–783, 1999.

    Article  Google Scholar 

  16. Sen, M. K. and P. L. Stoffa, Bayesian inference, Gibbs’ sampler and uncertainty estimation in geophysical inversion, Geophys. Prosp., 44, 313–350, 1996.

    Article  Google Scholar 

  17. Tarits, P., V. Jouanne, M. Menvielle, and M. Roussignol, Bayesian statistics of non-linear inverse problems: examples of the magnetotelluric 1-D inverse problem, Geophys. J. Inter., 119, 353–368, 1994.

    Article  Google Scholar 

  18. Vasseur, G. and P. Weidelt, Bimodal electromagnetic induction in nonuniform thin sheets with an application to the northern Pyrenean induction anomaly, Geophys. J. Roy. astr. Soc., 51, 669–690, 1977.

    Article  Google Scholar 

  19. Wang, L. J. and F. E. M. Lilley, Inversion of magnetometer array data by thin-sheet modeling, Geophys. J. Inter., 137, 128–138, 1999.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hendra Grandis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grandis, H., Menvielle, M. & Roussignol, M. Thin-sheet electromagnetic inversion modeling using Monte Carlo Markov Chain (MCMC) algorithm. Earth Planet Sp 54, 511–521 (2002). https://doi.org/10.1186/BF03353042

Download citation

Keywords

  • Markov Chain
  • Monte Carlo Markov Chain
  • Induction Vector
  • Impedance Tensor
  • Host Medium