Skip to main content

Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield

Abstract

A priori knowledge on large-scale sub-surface conductivity structure is required in many applications investigating electrical properties of the lithosphere. A map on crustal conductivity for the Fennoscandian Shield and its surrounding oceans, sea basins and continental areas is presented. The map is based on a new database on crustal conductance, i.e. depth integrated conductivity, where all available information on the conductivity of the bedrock, sedimentary cover and seawater are compiled together for the first time for the Fennoscandian Shield. The final model consists of eight separate layers to allow a 3D description of conductivity structures. The first three layers, viz. water, sediments and the first bedrock layer, describe the combined conductance of the uppermost 10 km. The other five bedrock layers contain the data of the crustal conductance from the depth of 10 km to the depth of 60 km. The database covers an area from 0°E to 50°E and 50°N to 85°N. Water conductances are estimated from bathymetric data by converting depths to conductances and taking into account the salinity variations in the Baltic Sea. Conductance of the sedimentary cover includes estimates on the conductance of both marine and continental sediments. Bedrock conductances are extrapolated from 1D- and 2D-models. Extrapolations are based on data from magnetometer array studies, airborne electromagnetic surveys and other electromagnetic investigations as well as on other geophysical and geological data. The crustal conductivity structure appears to be very heterogeneous. Upper crust, in particular, has a very complex structure reflecting a complex geological history. Lower crust seems to be slightly more homogeneous although large regional contrasts are found in both the Archaean and Palaeoproterozoic areas.

References

  1. Adam, A., P. Kaikkonen, S.-E. Hjelt, K. Pajunpää, L. Szarka, and A. Wallner, Magnetotelluric and audiomagnetotelluric measurements in Finland, Tectonophys., 90, 77–90, 1982.

    Google Scholar 

  2. Agustsson, K., A magnetotelluric pilot study in the Scandes, Geologiska Föreningens i Stockholm Förhandlingar (GFF), 108, 258–261, 1986.

    Google Scholar 

  3. Arkimaa, H., E. Hyvönen, J. Lerssi, K. Loukola-Ruskeeniemi, and J. Vanne, Proterozoic black shale anomalies and aeromagnetic anomalies in Finland, 1:1000000, Geological Survey of Finland, Espoo, Finland, 2000.

    Google Scholar 

  4. BABEL Working Group, Integrated seismic studies of the Baltic Shield using data in the Gulf of Bothnian region, Geophys. J. Int., 112, 305–324, 1993.

    Google Scholar 

  5. BEAR Working Group, BEAR is searching into a lithosphere-asthenosphere boundary beneath Fennoscandia, in SVEKALAPKO—an EUROPROBE project, 4th workshop, Lammi, Finland, 18–21.11.1999, Abstracts, edited by S.-E. Hjelt, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 22, 9–10, 1999.

  6. BEAR Working Group and I. Varentsov, Indications for lithosphere-asthenosphere conductivity in Fennoscandia after preliminary modellings/inversions of the BEAR electromagnetic data, in SVEKALAPKO—an EUROPROBE project, 5th workshop, Lammi, Finland, 2–5.11.2000, Abstracts, edited by S.-E. Hjelt, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 23, 17, 2000.

  7. Calcagnile, G., Deep structure of Fennoscandia from fundamental and higher mode dispersion of Rayleigh waves, Tectonophys., 195, 139–149, 1991.

    Google Scholar 

  8. Calcagnile, G., P. Pierri, V. Del Gaudio, and St. Mueller, A two-dimensional velocity model for the upper mantle beneath Fennolora from seismic surface and body waves, in The European Geotraverse: Integrative studies, Results from the Fifth Earth Science Study Centre, Rauischholzhausen Germany, 26.3–7.4.,1990, edited by R. Freeman, P. Giese, and St. Mueller, European Science Foundation, pp. 49–66, 1991.

  9. Elo, S., Interpretations of the Gravity Anomaly Map of Finland, Geophysica, 33, 51–80, 1997.

    Google Scholar 

  10. Elo, S., E. Lanne, T. Ruotoistenmäki, and A. Sindre, Interpretation of gravity anomalies along the POLAR Profile in the northern Baltic Shield, Tectonophys., 162, 135–150, 1989.

    Google Scholar 

  11. Engels, M., T. Korja, and the BEAR Working Group, Multisheet modelling of the electrical conductivity structure in the Fennoscandian Shield, Earth Planets Space, 54, this issue, 559–573, 2002.

    Google Scholar 

  12. ERCEUGT group, An electrical resistivity transect from the Alps to the Baltic Sea (Central segment of the EGT), Tectonophys., 207, 123–129, 1992.

    Google Scholar 

  13. Flosadóttir, A. H., J. C. Larsen, and J. T. Smith, Motional induction in North Atlantic circulation models, J. Geophys. Res., 102, 10353–10372, 1997.

    Google Scholar 

  14. Fofonoff, N. P. and R. C. Millard, Jr., Algorithms for computation of fundamental properties of sea water, Unesco Tech. Pap. Mar. Sci., 44, 53 pp., UNESCO, Paris, 1983.

  15. Gee, D. G., The regional geological context of the Tåsjö Uranium Project, Caledonian Front, Central Sweden, Sveriges Geologiska Undersökning (SGU), Serie C., NR 671, 1–36, 1972.

    Google Scholar 

  16. Gharibi, M., T. Korja, and L. B. Pedersen, Magnetotelluric soundings across the Scandinavian Caledonides, Jämtland, Sweden, in Electromagnetic studies of the continental crust in Sweden, edited by M. Gharibi, Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, Uppsala, Sweden, 513, 1–50, 2000.

  17. Golod, M. I. and B. N. Klabukov, Resistivity of rocks in the southeastern part of the Baltic Shield, in Geoelectric models of the Baltic Shield. Final report of project No. 13 between the Academy of Finland and the Academy of Science of the USSR, edited by S.-E. Hjelt and L. L. Vanyan, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 16, 21–22, 1989.

    Google Scholar 

  18. Golod, M. I., B. N. Klabukov, A. S. Grishin, and N. D. Vasin, The geoelectric model of central Karelia, in The Development of the Deep Geoelectric Model of the Baltic Shield, Part 2. Proceedings of the 1st project symposium, Oulu, 15–18 November 1983, edited by S.-E. Hjelt, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 8, 180–204, 1983a.

    Google Scholar 

  19. Golod, M. I., B. N. Klabukov, and A. S. Grishin, Results of the deep MTS in Karelia, in Results of the geophysical study of Precambrian formations of Karelia, Karelian branch, Akademii Nauk, SSSR, Petrozavodsk, Russia, pp. 4–21, 1983b (in Russian).

  20. Golod, M. I., B. N. Klabukov, and A. S. Grishin, The deep electrical conductivity of the Karelian block of the Baltic Shield, in Deep Electroconductivity of the Baltic Shield, edited by L. L. Vanyan and M. I. Golod, pp. 7–18, Karelian branch, Akademii Nauk, SSSR, Petrozavodsk, Russia, 1986 (in Russian).

    Google Scholar 

  21. Gorbatschev, R. and S. Bogdanova, Frontiers in the Baltic Shield, Precambrian Res., 64, 3–21, 1993.

    Google Scholar 

  22. Guggisberg, B., W. Kaminski, and C. Prodehl, Crustal structure of the Fennoscandian Shield: A traveltime interpretation of the long-range FENNOLORA seismic refraction profile, Tectonophys., 195, 105–137, 1991.

    Google Scholar 

  23. Heikka, J., A. A. Zhamaletdinov, S.-E. Hjelt, T. A. Demidova, and Ye. P. Velikhov, Preliminary results of MHD test registrations in northern Finland, J. Geophys., 55, 199–202, 1984.

    Google Scholar 

  24. Heinson, G., Electromagnetic Studies of the Lithosphere and Asthenosphere, Surveys in Geophysics, 20, 229–255, 1999.

    Google Scholar 

  25. Hjelt, S.-E., Deep electromagnetic studies of the Baltic Shield, J. Geophys., 55, 144–152, 1984.

    Google Scholar 

  26. Hjelt, S.-E., K. Pajunpää, and T. Korja, Deep electromagnetic investigations along the Pyhtää-Lieksa (Baltic) link. Report of Investigations. Department of Geophysics, University of Oulu, Oulu, Finland, pp. 38, 1984.

    Google Scholar 

  27. Hjelt, S.-E., P. Kaikkonen, K. Pajunpää, T. Korja, and J. Heikka, Electromagnetic studies of the Baltic Shield in Finland, Annales Geophysicae, Series B 4(2), 131–138, 1986.

    Google Scholar 

  28. Hjelt, S.-E., Aspects of the geoelectric models of the Baltic Shield, Precambrian Res., 35, 181–194, 1987.

    Google Scholar 

  29. Hjelt, S.-E., Geoelectric studies and conductivity structures of the Eastern and Northern parts of the Baltic Shield, Tectonophys., 189, 249–260, 1991.

    Google Scholar 

  30. Hjelt, S.-E., Magnetovariational and magnetotelluric results (northern Europe), in A Continent Revealed: The European Geotraverse, edited by D. Blundell, R. Freeman, and St. Mueller, Cambridge Univ. Press, 1992.

  31. Hjelt, S.-E. and T. Korja, Lithospheric and upper-mantle structures, results of electromagnetic soundings in Europe, Phys. Earth Planet. Inter., 79, 137–177, 1993.

    Google Scholar 

  32. Hjelt, S.-E. and S. Daly, SVEKALAPKO, Evolution of Palaeoproterozoic and Archaean Lithosphere, in EUROPROBE 1996—Lithosphere Dynamics Origin and Evolution of Continents, edited by D. G. Gee and H. J. Zeyen, pp. 57–67, published by the EUROPROBE Secretariate, Uppsala University, 1996.

    Google Scholar 

  33. Hjelt, S.-E., J. V. Heikka, T. K. Pernu, and E. I. O. Sandgren, Examples of application of the VLF-R method to prospect bedrock structures, in Electrical prospecting for ore deposits in the Baltic Shield. Part 2: Electromagnetic methods, edited by S.-E. Hjelt and A. Fokin, Geol. Surv. Finland, Report of Investigations, 95, 87–99, 1990.

    Google Scholar 

  34. Jones, A. G., Geomagnetic induction studies in Scandinavia—I Determination of the inductive response function from the magnetometer array data, J. Geophys., 48, 181–194, 1980.

    Google Scholar 

  35. Jones, A. G., Geomagnetic induction studies in Scandinavia. II Geomagnetic depth sounding, induction vectors and coast effect, J. Geophys., 50, 23–36, 1981.

    Google Scholar 

  36. Jones, A. G., On the electrical crust-mantle structure in Fennoscandia: no Moho, and the asthenosphere revealed?, Geophys. J. R. Astron. Soc., 68, 371–388, 1982a.

    Google Scholar 

  37. Jones, A. G., Observations of the electrical asthenosphere beneath Scandinavia, Tectonophys., 90, 37–55, 1982b.

    Google Scholar 

  38. Jones, A. G., The electrical structure of the lithosphere and asthenosphere beneath the Fennoscandian shield, J. Geomag. Geoelectr., 35, 811–827, 1983.

    Google Scholar 

  39. Jones, A. G., B. Olafsdottir, and J. Tiikkainen, Geomagnetic induction studies in Scandinavia—III. Magnetotelluric observations, J. Geophys., 54, 35–50, 1983.

    Google Scholar 

  40. Kaikkonen, P. and K. Pajunpää, Audiomagnetotelluric measurements across the Lake Ladoga—Bothnian Bay Zone in Central Finland, Geophys. J. R. Astron. Soc., 78, 439–452, 1984.

    Google Scholar 

  41. Kaikkonen, P., L. L. Vanyan, S.-E. Hjelt, K. Pajunpää, and P. P. Shilovsky, A preliminary geoelectrical model of the Karelian megablock of the Baltic Shield, Phys. Earth Planet. Inter., 32, 301–305, 1983.

    Google Scholar 

  42. Kaikkonen, P., T. Pernu, J. Tiikkainen, A. A. Nozdrina, N. A. Palshin, L. L. Vanyan, and I. V. Yegorov, Deep DC soundings in southwest Finland using the Fenno-Skan HVDC Link as a source, Phys. Earth Planet. Inter., 94(3–4), 275–290, 1996.

    Google Scholar 

  43. Kobzova, V., I. Varentsov, and B. Ladanivsky, Physical and numerical modelling results comparison of EM field 3D inhomogeneity, in Abstracts of the 15th Workshop on Electromagnetic Induction in the Earth, Cabo Frio, Brazil, 18–26.08.2000, 131–132, 2000.

    Google Scholar 

  44. Kohonen, J. and S. Elo, Archaean Sotkuma Dome in North Karelia, eastern Finland; a geophysical study and geological interpretation, in Meta-morphism, Deformation and Structure of Crust, Abstracts, edited by P. Tuisku and K. Laajoki, Res. Terrae, University of Oulu, Department of Geology, Oulu, Finland, Ser. A, 5, 32, 1991.

    Google Scholar 

  45. Korja, A., T. Korja, U. Luosto, and P. Heikkinen, Seismic and geoelectric evidence for collisional and extensional events in the Fennoscandian Shield-implications for Precambrian crustal evolution, Tectonophys., 219, 129–152, 1993.

    Google Scholar 

  46. Korja, T., Electrical conductivity of the lithosphere. Magnetotelluric studies in the Fennoscandian Shield, Finland, Acta Univ. Oul., A215, 55, 1990.

    Google Scholar 

  47. Korja, T., Electrical conductivity distribution of the lithosphere in the central Fennoscandian Shield, Precambrian Res., 64, 85–108, 1993.

    Google Scholar 

  48. Korja, T., Electrical conductivity of the lithosphere—implications for the evolution of the Fennoscandian Shield, Geophysica, 33, 17–50, 1997.

    Google Scholar 

  49. Korja, T. and the BEAR Working Group, The structure of the crust and upper mantle in Fennoscandia as imaged by electromagnetic waves, in Lithosphere 2000. Program and extend abstracts, edited by L. Pesonen, A. Korja, and S.-E. Hjelt, Institute of Seismology, University of Helsinki, Helsinki, Finland, Report S-41, 25–34, 2000.

    Google Scholar 

  50. Korja, T. and S.-E. Hjelt, Electromagnetic studies in the Fennoscandian Shield-electrical conductivity of Precambrian crust, Phys. Earth Planet. Inter., 81, 107–138, 1993.

    Google Scholar 

  51. Korja, T. and S.-E. Hjelt, The Fennoscandian Shield: A treasury box for deep electromagnetic studies, in Deep Electromagnetic Exploration, edited by K. K. Roy, S. K. Verma, and K. Mallick, pp. 31–73, Narossa Publishing House, New Delhi, India, 1998.

    Google Scholar 

  52. Korja, T. and K. Koivukoski, Crustal conductors of the SVEKA Profile in the Early Proterozoic Fennoscandian (Baltic) Shield, Finland, Geophys. J. Int., 116, 173–197, 1994.

    Google Scholar 

  53. Korja, T., K. Pajunpää, P. Zhang, Magnetovariational and magnetotelluric studies of the Oulu anomaly on the Baltic Shield in Finland, J. Geophys., 59, 32–41, 1986.

    Google Scholar 

  54. Korja, T., S.-E. Hjelt, P. Kaikkonen, K. Koivukoski, T. M. Rasmussen, and R. G. Roberts, The geoelectric model of the POLAR profile, Northern Finland, Tectonophys., 162, 113–133, 1989.

    Google Scholar 

  55. Korja, T., P. Tuisku, T. Pernu, and J. Karhu, Field, petrophysical and carbon isotope studies on the Lapland Granulite Belt: implications for deep continental crust, Terra Nova, 8, 48–58, 1996.

    Google Scholar 

  56. Korsman, K., T. Korja, M. Pajunen, and the GGT/SVEKA Working Group, The GGT/SVEKA Transect: Structure and Evolution of the Continental Crust in the Palaeoproterozoic Svecofennian Orogen in Finland, International Geology Review, 41(4), 287–333, 1999.

    Google Scholar 

  57. Kovtun, A. A., Induction studies in stable shield and platform areas, Acta Geod. Geophys. Mont., Acad. Sci. Hung., 11, 333–346, 1976.

    Google Scholar 

  58. Kovtun, A. A., The structure of the crust and upper mantle on the Northwestern part of East-European Platform, Leningrad State University (LGU), 284 pp., 1989 (in Russian).

  59. Kovtun, A. A., S. A. Vagin, I. L. Vardaniants, N. P. Legenkova, O. N. Moiseev, M. Yu. Smirnov, and N. I. Uspenskiy, The crust and upper mantle structure along the profile Suoyarvy-Vyborg according to magnetotelluric data, VestnikLGU (Leningrad University), 4(25), 25–34, 1988 (in Russian).

    Google Scholar 

  60. Kovtun, A. A., O. N. Moiseev, S. A. Vagin, I. L. Vardaniants, E. L. Kokvina, A. A. Saveliev, and N. I. Uspenskiy, MT-AMT soundings on the Kola Peninsula and in Karelia, in Geoelectric models of the Baltic Shield. Final report of project No. 13 between the Academy of Finland and the Academy of Science of the USSR, edited by S.-E. Hjelt and L. L. Vanyan, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 16, 111–117, 1989.

    Google Scholar 

  61. Kovtun, A. A., S. A. Vagin, I. L. Vardaniants, L. N. Porokhova, E. L. Kokvina, and N. I. Uspenskiy, Magnetotelluric investigation of the crust and upper mantle structure in the Eastern part of Baltic Shield, in Proceedings of the Jubilee Symposium of the 10 years Finnish-Soviet co-work in geoelectrics, edited by P. Kaikkonen, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 18, 47–54, 1992.

    Google Scholar 

  62. Kovtun, A. A., S. A. Vagin, I. L. Vardaniants, E. L. Kokvina, and N. I. Uspenskiy, Magnetotelluric investigations of the crust and mantle structure in the eastern part of the Baltic Shield, Izvestiya Rossiyskoy Akademii Nauk, Physics of Earth, 3, 32–36, 1994 (in Russian).

    Google Scholar 

  63. Kovtun, A. A., S. A. Vagin, I. L. Vardaniants, N. P. Legenkova, N. I. Uspenskiy, and M. Yu. Smirnov, Structure of the crust and upper mantle by the MT soundings on the profile Murmansk-Suoyarvy-Vyborg, Rossiyaskayageofizika, 11–12, 57–67, 1998 (in Russian).

    Google Scholar 

  64. Krasnobayeva, A. G., B. P. Dyakonov, P. F. Astafjev, O. V Batalova, V. S. Vishnev, I. E. Gavrilova, R. B. Zhuravleva, and S. K. Kirillov, The structure of the north-eastern part of the Baltic shield based on the magnetotelluric data, Izvestiya Rossiyskoy Akademii Nauk, Physics of the Solid Earth, 6, 65–73, 1981.

    Google Scholar 

  65. Kukkonen, I., Petrophysical properties of graphite bearing rocks, Report M81/1984/4, Geological Survey of Finland, Espoo, Finland, 49 pp., 1984 (in Finnish).

    Google Scholar 

  66. Lahermo, P., Electrical conductivity of waters in dug wells and drilled bedrock wells, Map 39b, in Atlas of Finland, Appendix 123–126 (1990) Geology, 5th Edition, edited by P. Alalammi, National Board of Survey, Helsinki, Finland, 1990.

    Google Scholar 

  67. Lakanen, E., Scalar-AMT applied to base metal exploration in Finland, Geophysics, 51, 1628–1646, 1986.

    Google Scholar 

  68. Laske, G. and G. Masters, A Global Digital Map of Sediment Thickness, EOS Trans. Amer. Geophys. Union, 78, F483, 1997.

    Google Scholar 

  69. Lerssi, J., H. Arkimaa, E. Hyvonen, J. Vanne, and K. Loukola-Ruskeeniemi, Distribution of sulphide-rich black shales in Finland and applications for environmental risk evaluation, in 5th Meeting of the Environmental and Engineering Geophysical Society, European section, September 6–9, 1999, Budapest, Hungary: proceedings compiled by L. Verö, Budapest: Environmental and Engineering Geophysical Society, 2 p., 1999.

    Google Scholar 

  70. Losecke, W., K. Knödel, and W. Müller, The conductivity distribution in the North German sedimentary basin derived from widely spaced areal magnetotelluric measurements, Geophys. J. R. Astron. Soc., 58, 169–179, 1979.

    Google Scholar 

  71. Lubavin, L. M., A. A. Zhamaletdinov, and V I. Pozhilenko, The Structure of the Southeast Part of the Kola Peninsula by Results of Airborne and Ground-Level Electrical Exploration, Geophysics, No. 3, 53–62, Russian Academy of Sciences, Kola Research Center, Geological Institute, Apatity, Russia, 1999 (in Russian).

    Google Scholar 

  72. Neal, S. L., R. L. Mackie, J. C. Larsen, and A. Schultz, Variations in the electrical conductivity of the upper mantle beneath North America and the Pacific Ocean, J. Geophys. Res., 105(B4), 8229–8242, 2000.

    Google Scholar 

  73. Nironen, M., The Svecofennian Orogen: a tectonic model, Precambrian Res., 86, 21–44, 1997.

    Google Scholar 

  74. NOAA, Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth, NOAA, National Geophysical Data Center, Boulder, Colorado, 1988. See also: http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML.

    Google Scholar 

  75. Olsen, N., The electrical conductivity of the mantle beneath Europe derived from C-responses from 3 to 720 hr, Geophys. J. Int., 133, 298–308, 1998.

    Google Scholar 

  76. Osipova, I. L., S.-E. Hjelt, and L. L Vanyan, Source field problems in northern parts of the Baltic Shield, Phys. Earth Planet. Inter., 53, 337–342, 1989.

    Google Scholar 

  77. Pajunpää, K., Magnetometer array studies in Finland—determination of single station transfer functions, J. Geophys., 55, 153–160, 1984.

    Google Scholar 

  78. Pajunpää, K., Magnetometer array studies in southeastern Finland on the Baltic Shield, J. Geophys., 59, 32–41, 1986.

    Google Scholar 

  79. Pajunpää, K., Conductivity anomalies in the Baltic Shield in Finland, Geophys. J. R. Astron. Soc., 91, 657–666, 1987.

    Google Scholar 

  80. Pajunpää, K., Application of horizontal spatial gradient method to magnetometer array data in Finland—Preliminary results, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 15, 13 pp., 1988.

    Google Scholar 

  81. Pajunpää, K., Magnetometer array studies in Finland, Acta Univ. Oul., A 205, 32, 1989.

    Google Scholar 

  82. Pajunpää, K., J. Heikka, and T. Korja, Magnetometer array studies in Finland, J. Geomag. Geoelectr., 35, 543–553, 1983.

    Google Scholar 

  83. Pedersen, L. B., T. M. Rasmussen, and P. Zhang, Electrical anisotropy of the Siljan impact region, in Magnetotelluric study of the Siljan Impact region: techniques and results, edited by P. Zhang, Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science, Uppsala, Sweden, 181, 1989.

  84. Pedersen, L. B., C. Juhlin, and T. M. Rasmussen, Electrical resistivity in the Gravberg—1 Deep Well, Sweden, J. Geophys. Res., 97, 9171–9182, 1992.

    Google Scholar 

  85. Peltoniemi, M., J. Korhonen, and S.-E. Hjelt, Electrical conductance of the surficial parts of the crust (0–150 m) as interpreted from airborne survey data, Map 29a, in Atlas of Finland, Appendix 123–126 (1990) Geology, 5th Edition, edited by P. Alalammi, National Board of Survey, Helsinki, Finland, 1990.

    Google Scholar 

  86. Pernu, T., Model and field studies of direct current resistivity measurement with the combined (half-Schlumberger) array AMN, MNB, Acta Univ. Oul., A 221, 77, 1991.

    Google Scholar 

  87. Pernu, T., H. Juntti, T. Keränen, E. Heikkinen, and J. Mursu, Geophysical investigations of the northern part of the Tampere Schist Belt, Department of Geophysics, University of Oulu, Oulu, Finland, Project Report, 129 pp., 1989 (in Finnish).

    Google Scholar 

  88. Puranen, R., L. Sahala, H. Säävuori, and I. Suppala, Airborne electromagnetic surveys of clay areas in Finland, in Geological Survey of Finland, Current Research 1997–1998, edited by S. Autio, Geological Survey of Finland, Special Paper, 27, 159–171, 1999.

  89. Rasmussen, T. M., Magnetotelluric investigations of the Baltic Shield in Sweden. Techniques and geophysical implication, Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science, Uppsala, Sweden, 69, 7 pp. 1987.

    Google Scholar 

  90. Rasmussen, T. M., Magnetotellurics in southwestern Sweden: evidence for electrical anisotropy in the lower crust, J. Geophys. Res., 93, 7897–7907, 1988.

    Google Scholar 

  91. Rasmussen, T. M., R. G. Roberts, and L. B. Pedersen, Magnetotellurics along the Fennoscandian Long Range Profile, Geophys. J. R. Astron. Soc., 89, 799–820, 1987.

    Google Scholar 

  92. Rasmussen, T. M., L. B. Pedersen, B. H. Jacobsen, N. P. Balling, I. D. Thomsen, and K. Pajunpää, Interpretation of magnetotelluric and geomagnetic depth sounding data from Scandinavia, Annales Geophysicae, Supplement I, 10, C7, 1992.

    Google Scholar 

  93. Rekola, T. and T. Ahokas, Findings from geophysical surveys in the Outokumpu zone, Finland, Paper presented in the 49th Annual Meeting and Technical Exhibition, EAEG, 8–12 June 1987, Belgrad, 15 pp., 1987.

  94. Roberts, R. G., P. Zhang, and L. B. Pedersen, Remote reference magnetotellurics across the mylonite shear zone in southern Sweden: A preliminary report, in The Development of the Deep Geoelectric Model of the Baltic Shield, part 2, edited by S.-E. Hjelt, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 8, 328–339, 1983.

    Google Scholar 

  95. Rokityansky, I. I., Geoelectromagnetic studies of the Baltic and Ukrainian Shield: Review of some results, in The Development of the Deep Geoelectric Model of the Baltic Shield, part 2, edited by S.-E. Hjelt, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 8, 110–150, 1983.

    Google Scholar 

  96. Rokityansky, I. I., N. D. Vasin, M. I. Golod, G. P. Novitsky, D. A. Rokityanskaya, and S. Ya. Sokolov, Electric anomalies in the south of Karelia, Geophys. Comm. Kiev, 89, 36–39, 1979 (in Russian).

    Google Scholar 

  97. Rokityansky, I. I., S. N. Kulik, and D. A. Rokityanskaya, The Ladoga electric conductivity anomaly, J. Geophys., Ukr Acad. Sci., 3, 97–99, 1981 (in Russian).

    Google Scholar 

  98. Rönkä, E., Drilled wells and groundwater in the Precambrian crystalline bedrock of Finland, pmPublications of Water Research Institute, National Boards of Waters, Helsinki, Finland, 52, 57 pp., 1983.

    Google Scholar 

  99. Schultz, A., R. D. Kurtz, A. D. Chave, and A. G. Jones, Conductivity discontinuities in the upper mantle beneath a stable craton, Geophys. Res. Lett., 20, 2941–2944, 1993.

    Google Scholar 

  100. Soveri, U., Influence of meltwater on the amount and composition of ground water in Quaternary deposits in Finland, Publications of Water Research Institute, National Boards of Waters, Helsinki, Finland, 63, 92 pp., 1985.

    Google Scholar 

  101. Suhadolc, P., G. F. Panza, and St. Mueller, Physical properties of the lithosphere-asthenosphere system in Europe, Tectonophys., 176, 123–135, 1990.

    Google Scholar 

  102. Tanskanen, E. I., A. Viljanen, T. I. Pulkkinen, L. Häkkinen, A. Pulkkinen, and O. Amm, At substorm onset, 40% of AL comes from underground, J. Geophys. Res., 106, 13119–13134, 2001.

    Google Scholar 

  103. Vaaraniemi, E., Electromagnetic studies of the lithosphere on the Northern Segment of the EGT., Unpublished M.Sc. thesis, Department of Geophysics, University of Oulu, Oulu, Finland, 111 pp., 1989 (in Finnish).

    Google Scholar 

  104. Vanyan, L. L., Electromagnetic sounding. “Scientific World”, Moscow, Russia, 291 pp., 1997.

    Google Scholar 

  105. Vanyan, L. L. and V. A. Kouznetsov, A crustal conducting layer in Central Finland: myth or reality?, Fizica Zemli, 3, 62–64, 1999.

    Google Scholar 

  106. Vanyan, L. L., T. A. Demidova, N. A. Palshin, A. A. Zhamaletdinov, Interpretation of the deep DC soundings in the northeastern Baltic Shield, Phys. Earth Planet. Inter., 54, 149–155, 19

    Google Scholar 

  107. Velikhov, Ye. P., A. A. Zhamaletdinov, I. V. Belkov, G. I. Gorbunov, S.-E. Hjelt, A. S. Lisin, L. L. Vanyan, M. S. Zhdanov, T. A. Demidova, T. Korja, S. K. Kirillov, Electromagnetic studies on the Kola Peninsula and in Northern Finland by means of a powerful controlled source, J. Geodynamics, 5, 237–256, 1987.

    Google Scholar 

  108. Viljakainen, M., A magnetotelluric study on the electrical conductivity of the upper mantle in the Archaean Kuhmo region, Unpublished M.Sc. thesis, Department of Geophysics, University of Oulu, Oulu, Finland, 66 + 10 pp., 1996 (in Finnish).

    Google Scholar 

  109. Viljanen, A. and L. Häkkinen, IMAGE magnetometer network, in Satellite-Ground Based Coordination Sourcebook, edited by M. Lockwood, M. N. Wild, and H. J. Opgenoorth, ESA publications, SP-1198, 111–117, 1997.

  110. Viljanen, A., O. Amm, and R. Pirjola, Modelling Geomagnetically Induced Currents During Different Ionospheric Situations, J. Geophys. Res., 104, 28059–28072, 1999.

    Google Scholar 

  111. Voipio, A. (editor), The Baltic Sea, Elsevier Oceanography Series, 30, Elsevier, Amsterdam, pp. 418, 1981.

  112. Wessel, P. and W. H. F. Smith, New, improved version of Generic Mapping Tools released, EOS Trans. Amer Geophys. Union, 79(47), 579, 1998.

    Google Scholar 

  113. Zhamaletdinov, A. A., Electrical conductivity models of lithosphere—results from controlled source surveys, Academy of Sciences of U.S.S.R., Kola Research Center, 159 pp., 1990 (in Russian).

  114. Zhamaletdinov, A. A., Electric soundings with controlled sources on the Baltic Shield, in Proceedings of the Jubilee Symposium of 10 years Finnish-Soviet co-work in geoelectrics, Oulu, 18–19 December, 1991, edited by P. Kaikkonen, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 18, 104, 1992.

    Google Scholar 

  115. Zhamaletdinov, A. A., Graphite in the Earth’s Crust and Electrical Conductivity Anomalies, Izvestija, Physics of the Solid Earth, 32(4), 272–288, 1996, translated from Fizika Zemli, 4, 12–29, 1996.

    Google Scholar 

  116. Zhamaletdinov, A. A. and A. S. Semenov, Electronically conducting rocks of the crystalline basement and their significance for deep electric soundings, in The Development of the Deep Geoelectric Model of the Baltic Shield, part 2, edited by S.-E. Hjelt, Department of Geophysics, University of Oulu, Oulu, Finland, Report, 8, 17–36, 1984.

    Google Scholar 

  117. Zhamaletdinov, A. A., A. D. Tokarev, Yu. A. Vinogradov, V. E. Asming, N. A. Otchkur, J. S. Ronning, and O. B. Lile, Deep geoelectrical studies in the Finnmark and the Pechenga area by means of the “Khibiny” source, Phys. Earth Planet. Inter., 81, 277–287, 1993.

    Google Scholar 

  118. Zhang, P., T. M. Rasmussen, and L. B. Pedersen, Electrical resistivity structure of the Siljan impact region, J. Geophys. Res., 93(B6), 6485–6502, 1988.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Toivo Korja.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korja, T., Engels, M., Zhamaletdinov, A.A. et al. Crustal conductivity in Fennoscandia—a compilation of a database on crustal conductance in the Fennoscandian Shield. Earth Planet Sp 54, 535–558 (2002). https://doi.org/10.1186/BF03353044

Download citation

Keywords

  • Baltic Shield
  • Schist Belt
  • Fennoscandian Shield
  • Magnetotelluric Data
  • Thick Grey Line