Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Magnetotelluric soundings across the Taubaté Basin, Southeast Brazil


Thirteen magnetotelluric (MT) soundings were carried out in Neoproterozoic crystalline terrains and Tertiary sediments of the Taubaté basin, southeastern Brazil. The soundings were deployed in a cross-strike profile bisecting the basin along one of its thickest sub-basins and extending over mountain plateaus to the southeast and the northwest. Occurrences of numerous alkaline plugs and aligned tectonic grabens in the region are records of intense Mesozoic-Cenozoic tectonic activity. MT analysis techniques were used to evaluate data quality, infer strike direction, and correct for near-surface distortion. As the studied area is located only some tens of kilometers away from the Atlantic Ocean and in one of the most densely populated regions of the country, the data are severely distorted by industrial interference and the coast effect. Because of such effects, the data are modelled using a 2D inversion scheme within periods shorter than 0.1 s for the Taubaté Basin sites and shorter than 1–10 s for the off-basin sites, the latter depending on the distance of the site from the coast. The main result observed in the modelling is the identification of a conducting zone below 10 km depths beneath the region. There is poor resolution in the data of structures below this conductor, which is also not imaged beneath the basin. Studies carried out in different tectonic regions of the world have also reported conductive layers at about the same depth but in the studied area it is impossible to reach any conclusion about the total conductance of the layer with the available MT data.


  1. Almeida, F. F. M., The system of continental rifts bordering the Santos Basin, Brazil, An. Acad. Bras. Cienc., 48, 15–26, 1976.

  2. Asmus, H. E. and A. L. Ferrari, Hipótese sobre a causa do tectonismo cenozóico na região sudeste do Brasil, in Aspectos Estruturais da Margem Continental Leste e Sudeste do Brasil, Sér. Proj. REMAC 4, pp. 75–88, CENPES/PETROBRAS, Rio de Janeiro, 1978.

  3. Bahr, K., Geological noise in magnetotelluric data: A classification of distortion types, Phys. Earth Planet. Inter., 66, 24–38, 1991.

  4. Berrocal, J., M. Assumpção, R. Antezana, C. M. Dias Neto, R. Ortega, H. França, and J. A. V. Veloso, Sismicidade do Brasil, 320 pp., IAG-USP/CNEN, São Paulo, 1984.

  5. Boerner, D. E., J. A. Wright, G. J. Thurlow, and L. E. Reed, Tensor CSAMT studies at the Buchans Mine in central Newfoundland, Geophysics, 58, 12–19, 1993.

  6. Brito, P. M. A., Sondagens magnetotelúricas transversais à Bacia de Taubaté, MSc. Thesis, 106 pp., INPE/MCT., São José dos Campos, 1998.

  7. DAEE (Departamento de Águas e Energia Elétrica do Estado de São Paulo), Estudo de águas subterrâneas: Região administrativa 3 — São José dos Campos, Governo do Estado de São Paulo, São Paulo, Vol. 4, 19 pp., 1977.

  8. Deckart, K., G. Feraud, L. S. Marques, and H. Bertrand, New time constraints on dyke swarms related to the Parana-Etendeka magmatic province, and subsequent South Atlantic opening, southeastern Brazil, J. Volcanol. Geoth. Res., 80, 67–83, 1998.

  9. Dowling, F. L., Magnetotelluric measurements across the Wisconsin Arch, J. Geophys. Res., 75, 2683–2698, 1970.

  10. Egbert, G. D. and J. R. Booker, Robust estimation of geomagnetic transfer functions, Geophys. J. R. Astron. Soc., 87, 173–194, 1986.

  11. Eisel, M. and G. D. Egbert, On the stability of magnetotelluric transfer function estimates and the reliability of their variances, Geophys. J. Int., 144, 65–82, 2001.

  12. Figueiredo, I., Investigação magnetotelúrica nas serras do sudeste brasileiro (RJ/MG): Uma proposta de modelo crustal, Ph.D. Thesis, 163 pp., Observatório Nacional/CNPq, Rio de Janeiro, 1997.

  13. Goodwin, A. M., Principles of Precambrian Geology, 327 pp., Academic Press, San Diego, 1996.

  14. Groom, R. W. and R. C. Bailey, Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion, J. Geophys. Res., 94, 1913–1925, 1989.

  15. Haak, V. and V. R. S. Hutton, Electrical resistivity in continental lower crust, in The Nature of the Lower Continetal Crust, edited by J. B. Dawson, D. A. Carswell, J. Hall, and K. D. Wedepohl, Spec. Publ. Geol. Soc. London, 24, 35–49, 1986.

  16. Hasui, Y., A. F. Gimenez, and M. S. Melo, Sobre as bacias tafrogênicas continentais do sudeste brasileiro, in Ann. 30th Congresso Brasileiro de Geologia, 1, 382–391, 1978.

  17. Hyndman, R. D. and P. M. Shearer, Water in the lower continental crust: modeling magnetotelluric and seismic reflection studies, Geophys. J. Int., 98, 343–365, 1989.

  18. Hyndman, R. D., L. L. Vanyan, G. Marquis, and L. K. Law, The origin of electrically conductive lower continental crust: saline water or graphite?, Phys. Earth Planet. Inter., 81, 325–344, 1993.

  19. Jiracek, G. R., Near-surface and topographic distortions in electromagnetic induction, Surv. Geophys., 11, 163–203, 1990.

  20. Jones, A. G., Static shift of magnetotelluric data and its removal in a sedimentary basin environment, Geophysics, 53, 967–978, 1988.

  21. Jones, A. G., Electrical conductivity of the continental lower crust, in Continental Lower Crust, edited by D. M. Fountain, R. J. Arculus, and R. W. Kay, pp. 81–143, Elsevier, Amsterdam, 1992.

  22. Jones, A. G., J. A. Craven, G. W. McNeice, I. J. Ferguson, T. Boyce, C. Farquarson, and R. G. Ellis, North American Central Plains conductivity anomaly within the Trans-Hudson orogen in northern Saskatchewan, Canada, Geology, 21, 1027–1030, 1993.

  23. Macedo, J. M., Evolução tectônica da Bacia de Santos e areas continentais adjacentes, Bol. Geoc. Petrobrás, 3, 159–173, 1989.

  24. Mackie, R. L., T. R. Madden, and P. E. Wannamaker, Three-dimensional magnetotelluric modeling using difference equations—Theory and comparisons to integral equation solutions, Geophysics, 58, 215–226, 1993.

  25. Marques, A., Evolução tectono-sedimentar e perspectivas exploratórias da Bacia de Taubaté, São Paulo, Brasil, Bol. Geoc. Petrobras, 4, 253–262, 1990.

  26. Monteiro Santos, F. A., M. Nolasco, E. P. Almeida, J. Pous, and L. A. Mendes Vitor, Coast effects on magnetic and magnetotelluric transfer functions and their correction: application to MT soundings carried out in SW Iberia, Earth Planet. Sci. Lett., 186, 283–295, 2001.

  27. Padilha, A. L. and I. Vitorello, Investigações geoelétricas nas bacias de Taubaté, Volta Redonda e Resende, in Expanded Abstracts of the 37th Congresso Brasileiro de Geologia, 2, 403–404, 1992.

  28. Padilha, A. L., N. B. Trivedi, Í. Vitorello, and J. M. Da Costa, Geophysical constraints on tectonic models of the Taubaté Basin, southeastern Brazil, Tectonophys., 196, 157–273, 1991.

  29. Park, S. K., G. P. Biasi, R. L. Mackie, and T. R. Madden, Magnetotelluric evidence for crustal suture zones bounding the southern Great Valley, California, J. Geophys. Res., 96, 353–376, 1991.

  30. Parker, R. L. and J. B. Booker, Optimal one-dimensional inversion and bounding of magnetotelluric apparent resistivity and phase measurements, Phys. Earth Planet. Inter., 98, 269–282, 1996.

  31. Pereira, M. J. and F. J. Feijó, Bacia de Santos, Bol. Geoc. Petrobras, 8, 219–234, 1994.

  32. Qian, W. and L. B. Pedersen, Industrial interference magnetotellurics: An example from the Tangshan area, China, Geophysics, 56, 265–273, 1991.

  33. RADAMBRASIL, Levantamento dos recursos minerais (Mapa geológico 1:1,000,000), Brasília, 1983.

  34. Ramos, R. G. N., A. R. Saad, V. L. Galli, and V. A. Campanha, Modelo gravimétrico da compartimentação estrutural da Bacia de Taubaté (Jacareí—Aparecida do Norte), in Rel DGRM/IPT 10-R28732, 22 pp, IPT., São Paulo, 1990.

  35. Riccomini, C., O rifte continental do sudeste do Brasil, Ph.D. Thesis, 304 pp., Univ. São Paulo, São Paulo, 1989.

  36. Sadowski, G. R. and C. M. Dias Neto, O lineamento sismotectônico de Cabo Frio, Rev. Bras. Geoc., 11, 209–212, 1981.

  37. Shankland, T. J. and M. E. Ander, Electrical conductivity, temperature, and fluids in the lower crust, J. Geophys. Res., 88, 9475–9484, 1983.

  38. Smith, J. T. and J. R. Booker, Rapid inversion of two- and three-dimensional magnetotelluric data, J. Geophys. Res., 96, 3905–3922, 1991.

  39. Swift, C. M., A magnetotelluric investigation of an electrical conductivity anomaly in the South-Western United States, Unpubl. Ph.D. thesis, Dept. Geology Geophys., Mass. Inst. Technol., Cambridge, 1967.

  40. Thompson, R. N., S. A. Gibson, J. G. Mitchell, A. P. Dickin, O. H. Leonardos, J. A. Brod, and J. C. Greenwood, Migrating Cretaceous-Eocene magmatism in the Serra do Mar alkaline province, SE Brazil: melts from the deflected Trindade mantle plume?, J. Petrol., 39, 1493–1526, 1998.

  41. Wannamaker, P. E., Comment on “The petrologic case for a dry lower crust” by B. W. D. Yardley and J. W. Valley, J. Geophys. Res., 105, 6057–6064, 2000.

  42. Wannamaker, P. E., J. A. Stodt, and L. Rijo, A stable finite element solution for two-dimensional magnetotelluric modelling, Geophys. J. R. Astron. Soc., 88, 277–296, 1987.

  43. Wu, N., J. R. Booker, and J. T. Smith, Rapid two-dimensional inversion of COPROD2 data, J. Geomag. Geoelectr., 45, 1073–1087, 1993.

  44. Yardley, B. W. D. and J. W. Valley, The petrologic case for a dry lower crust, J. Geophys. Res., 102, 12173–12185, 1997.

  45. Yardley, B. W. D. and J. W. Valley, Reply to P.E. Wannamaker’s comments, J. Geophys. Res., 105, 6065–6068, 2000.

  46. Zalán, P. V., A tectônica transcorrente na exploração de petróleo: Uma revisão, Rev. Bras. Geoc., 16, 245–257, 1986.

Download references

Author information



Corresponding author

Correspondence to Antonio L. Padilha.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Padilha, A.L., Vitorello, Í. & Brito, P.M.A. Magnetotelluric soundings across the Taubaté Basin, Southeast Brazil. Earth Planet Sp 54, 617–627 (2002).

Download citation


  • Lower Crust
  • Apparent Resistivity
  • Static Shift
  • Continental Lower Crust
  • Ocean Effect