Skip to main content

Volume 56 Supplement 8

Special Issue: IUGG Hagiwara Symposium

  • Article
  • Published:

Earthquake cycles and physical modeling of the process leading up to a large earthquake

Abstract

A thorough discussion is made on what the rational constitutive law for earthquake ruptures ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid facts observed in the laboratory. From this standpoint, it is concluded that the constitutive law should be a slip-dependent law with parameters that may depend on slip rate or time. With the long-term goal of establishing a rational methodology of forecasting large earthquakes, the entire process of one cycle for a typical, large earthquake is modeled, and a comprehensive scenario that unifies individual models for intermediate-and short-term (immediate) forecasts is presented within the framework based on the slip-dependent constitutive law and the earthquake cycle model. The earthquake cycle includes the phase of accumulation of elastic strain energy with tectonic loading (phase II), and the phase of rupture nucleation at the critical stage where an adequate amount of the elastic strain energy has been stored (phase III). Phase II plays a critical role in physical modeling of intermediate-term forecasting, and phase III in physical modeling of short-term (immediate) forecasting. The seismogenic layer and individual faults therein are inhomogeneous, and some of the physical quantities inherent in earthquake ruptures exhibit scale-dependence. It is therefore critically important to incorporate the properties of inhomogeneity and physical scaling, in order to construct realistic, unified scenarios with predictive capability. The scenario presented may be significant and useful as a necessary first step for establishing the methodology for forecasting large earthquakes.

References

  • Aki, K., Characterization of barriers on an earthquake fault, J. Geophys. Res., 84, 6140–6148, 1979.

    Google Scholar 

  • Aki, K., Asperities, barriers, characteristic earthquakes and strong motion prediction, J. Geophys. Res., 89, 5867–5872, 1984.

    Google Scholar 

  • Andrews, D. J., Rupture propagation with finite stress in antiplane strain, J. Geophys. Res., 81, 3575–3582, 1976a.

    Google Scholar 

  • Andrews, D. J., Rupture velocity of plane strain shear cracks, J. Geophys. Res., 81, 5679–5687, 1976b.

    Google Scholar 

  • Aochi, H. and M. Matsu’ura, Slip-and time-dependent fault constitutive law and its significance in earthquake generation cycles, Pure Appl. Geophys., 159, 2029–2044, 2002.

    Google Scholar 

  • Beroza, G. C. and T. Mikumo, Short slip duration in dynamic rupture in the presence of heterogeneous fault properties, J. Geophys. Res., 101, 22449–22460, 1996.

    Google Scholar 

  • Bizzarri, A., M. Cocco, D. J. Andrews, and E. Boschi, Solving the dynamic rupture problem with different numerical approaches and constitutive laws, Geophys. J. Int., 144, 656–678, 2001.

    Google Scholar 

  • Blanpied, M. L., T. E. Tullis, and J. D. Weeks, Frictional behavior of granite at low and high sliding velocities, Geophys. Res. Lett., 14, 554–557, 1987.

    Google Scholar 

  • Bouchon, M., The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data, J. Geophys. Res., 102, 11731–11744, 1997.

    Google Scholar 

  • Bowman, D. D., G. Ouillon, C. G. Sammis, A. Sornette, and D. Sornette, An observational test of the critical earthquake concept, J. Geophys. Res., 103, 24359–24372, 1998.

    Google Scholar 

  • Brehm, D. J. and L. W. Braile, Intermediate-term earthquake prediction using precursory events in the New Madrid seismic zone, Bull. Seismol. Soc. Amer., 88, 564–580, 1998.

    Google Scholar 

  • Bufe, C. G. and D. J. Varnes, Predictive modeling of the seismic cycle of the greater San Francisco Bay region, J. Geophys. Res., 98, 9871–9883, 1993.

    Google Scholar 

  • Bufe, C. G., S. P. Nishenko, and D. J. Varnes, Seismicity trends and potential for large earthquakes in the Alaska-Aleutian region, Pure Appl. Geophys., 142, 83–99, 1994.

    Google Scholar 

  • Campillo, M. and I. R. Ionescu, Initiation of antiplane shear instability under slip dependent friction, J. Geophys. Res., 102, 20363–20371, 1997.

    Google Scholar 

  • Campillo, M., P. Favreau, I. R. Ionescu, and C. Voisin, On the effective friction law of a heterogeneous fault, J. Geophys. Res., 106, 16307–16322, 2001.

    Google Scholar 

  • Carlson, J. M. and J. S. Langer, Mechanical model of an earthquake fault, Phys. Rev., A 40, 6470–6484, 1989.

    Google Scholar 

  • Carlson, J. M., J. S. Langer, B. E. Show, and C. Tang, Intrinsic properties of a Burridge-Knopoff model of an earthquake fault, Phys. Rev., A 44, 884–897, 1991.

    Google Scholar 

  • Cocco, M. and A. Bizzarri, On the slip-weakening behavior of rateand state dependent constitutive laws, Geophys. Res. Lett., 29 (11), 10.1029/2001GL013999, 2002.

  • Day, S. M., Three-dimensional simulation of spontaneous rupture: The effect of nonuniform prestress, Bull. Seismol. Soc. Amer., 72, 1881–1902, 1982.

    Google Scholar 

  • Dieterich, J. H., Preseismic fault slip and earthquake prediction, J. Geophys. Res., 83, 3940–3948, 1978.

    Google Scholar 

  • Dieterich, J. H., Modeling of rock friction, 1. Experimental results and constitutive equations, J. Geophys. Res., 84, 2161–2168, 1979.

    Google Scholar 

  • Dieterich, J. H., Constitutive properties of faults with simulated gouge, in Mechanical Behavior of Crystal Rocks, edited by N. L. Cater, M. Friedman, J. M. Logan, and D. W. Stearns, Geophysical Monograph, 24, pp. 103–120, American Geophysical Union, Washington, D.C., 1981.

    Google Scholar 

  • Dieterich, J. H., A model for the nucleation of earthquake slip, in Earthquake Source Mechanics, edited by S. Das, J. Boatwright, and C. H. Scholz, pp. 37–47, Geophysical Monograph, 37, American Geophysical Union, Washington, D.C., 1986.

    Google Scholar 

  • Dieterich, J. H. and B. Kilgore, Implications of fault constitutive properties for earthquake prediction, Proc. Natl. Acad. Sci. USA, 93, 3787–3794, 1996.

    Google Scholar 

  • Dodge, D. A., G. C. Beroza, and W. L. Ellsworth, Evolution of the 1992 Landers, California, foreshock sequence and its implications for earthquake nucleation, J. Geophys. Res., 100, 9865–9880, 1995.

    Google Scholar 

  • Dodge, D. A., G. C. Beroza, and W. L. Ellsworth, Detailed observations of California foreshock sequence: Implications for the earthquake initiation process, J. Geophys. Res., 101, 22371–22392, 1996.

    Google Scholar 

  • Ellsworth, W. L. and G. C. Beroza, Seismic evidence for an earthquake nucleation phase, Science, 268, 851–855, 1995.

    Google Scholar 

  • Engdahl, E. R. and A. Villasenor, Global seismicity: 1900–1999, in International Handbook of Earthquake and Engineering Seismology, Part A, edited by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, pp. 665–690, Academic Press, New York, 2002.

    Google Scholar 

  • Fedotov, S. A., Regularities of the distribution of strong earthquakes in Kamchatka, the Kurile Islands and northeastern Japan, Acad. Sci. USSR Trudy Inst. Phys. Earth, 36, 66–93, 1965.

    Google Scholar 

  • Fukuyama, E. and R. Madariaga, Dynamic propagation and interaction of a rupture front on a planer fault, Pure Appl. Geophys., 157, 1959–1979, 2000.

    Google Scholar 

  • Fukuyama, E. and K. B. Olsen, A condition for super-shear rupture propagation in a heterogeneous stress field, Pure Appl. Geophys., 159, 2047–2056, 2002.

    Google Scholar 

  • Gu, J.-C., J. R. Rice, A. L. Ruina, and S. T. Tse, Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction, J. Mech. Phys. Solids, 32, 167–196, 1984.

    Google Scholar 

  • Ida, Y., Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy, J. Geophys. Res., 77, 3796–3805, 1972.

    Google Scholar 

  • Ida, Y., The maximum acceleration of seismic ground motion, Bull. Seismol. Soc. Amer., 63, 959–968, 1973.

    Google Scholar 

  • Ide, S. and M. Takeo, Determination of constitutive relations of fault slip based on seismic wave analysis, J. Geophys. Res., 102, 27379–27391, 1997.

    Google Scholar 

  • Imamura, A., On the seismic activity of central Japan, Japanese Journal of Astronomy and Geophysics, Transactions, National Research Council of Japan, 6, 119–137, 1928/29.

    Google Scholar 

  • Ionescu, I. R. and M. Campillo, Influence of the shape of the friction law and fault finiteness on the duration of initiation, J. Geophys. Res., 104, 3013–3024, 1999.

    Google Scholar 

  • Ishibashi, K. and K. Satake, Problems on forecasting great earthquakes in the subduction zones around Japan by means of paleoseismology, J. Seismol. Soc. Japan, Second Series, 50 (Supplement), 1–21, 1998.

    Google Scholar 

  • Jaume, S. C. and L. R. Sykes, Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes, Pure Appl. Geophys., 155, 279–306, 1999.

    Google Scholar 

  • Kanamori, H., The nature of seismicity patterns before large earthquakes, in Earthquake Prediction—An International Review, edited by D. W. Simpson and P. G. Richards, Maurice Ewing Series 4, pp. 1–19, American Geophysical Union, Washington D.C., 1981.

    Google Scholar 

  • Kanamori, H., Earthquake prediction: An overview, in International Handbook of Earthquake and Engineering Seismology, Part B, edited by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, pp. 1205–1216, Academic Press, New York, 2002.

    Google Scholar 

  • Kanamori, H. and G. S. Stewart, Seismological aspects of the Guatemala earthquake of February 4, 1976, J. Geophys. Res., 83, 3427–3434, 1978.

    Google Scholar 

  • Kato, A., M. Ohnaka, and H. Mochizuki, Constitutive properties for the shear failure of intact granite in seismogenic environments, J. Geophys. Res., 108 (B1), 2060, doi: 10.1029/2001JB000791, 2003a.

    Google Scholar 

  • Kato, A., M. Ohnaka, S. Yoshida, and H. Mochizuki, Effects of strain rate on constitutive properties for the shear failure of intact granite in seismogenic environments, Geophys. Res. Lett., 30 (21), 2108, doi:10.1029/2003GL018372, 2003b.

    Google Scholar 

  • Kumamoto, T., Long-term conditional seismic hazard of Quaternary active faults in Japan, J. Seismol. Soc. Japan, Second Series, 50 (Supplement), 53–71, 1998.

    Google Scholar 

  • Linker, M. F. and J. H. Dieterich, Effects of variable normal stress on rock friction: Observations and constitutive equations, J. Geophys. Res., 97, 4923–4940, 1992.

    Google Scholar 

  • Madariaga, R. and K. B. Olsen, Criticality of rupture dynamics in 3-D, Pure Appl. Geophys., 157, 1981–2001, 2000.

    Google Scholar 

  • Madariaga, R. and K. B. Olsen, Earthquake dynamics, in International Handbook of Earthquake and Engineering Seismology, Part A, edited by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, pp. 175–194, Academic Press, New York, 2002.

  • Madariaga, R., K. B. Olsen, and R. J. Archuleta, Modeling dynamic rupture in a 3-D earthquake fault model, Bull. Seismol. Soc. Amer., 88, 1182–1197, 1998.

    Google Scholar 

  • Maeda, K., Time distribution of immediate foreshocks obtained by a stacking method, Pure Appl. Geophys., 155, 381–394, 1999.

    Google Scholar 

  • Masuda, K., H. Mizutani, and I. Yamada, Experimental study of strain-rate dependence and pressure dependence of failure properties of granite, J. Phys. Earth, 35, 37–66, 1987.

    Google Scholar 

  • Matsuda, T., Present state of long-term prediction of earthquakes based on active fault data in Japan—An example for the Itoigawa-Shizuoka tectonic line active fault system—, J. Seismol. Soc. Japan, Second Series, 50 (Supplement), 23–33, 1998.

    Google Scholar 

  • Matsu’ura, M., H. Kataoka, and B. Shibazaki, Slip-dependent friction law and nucleation processes in earthquake rupture, Tectonophysics, 211, 135–148, 1992.

    Google Scholar 

  • McCann, W. R., S. P. Nishenko, L. R. Sykes, and J. Krause, Seismic gaps and plate tectonics: Seismic potential for major boundaries, Pure Appl. Geophys., 117, 1082–1147, 1979.

    Google Scholar 

  • Mogi, K., Sequential occurrence of recent great earthquakes, J. Phys. Earth, 16, 30–36, 1968.

    Google Scholar 

  • Nakanishi, H., Earthquake dynamics driven by a viscous fluid, Phys. Rev., A 46, 4689–4692, 1992.

    Google Scholar 

  • Nishenko, S. P., Circum-Pacific seismic potential: 1989–1999, Pure Appl. Geophys., 135, 169–259, 1991.

    Google Scholar 

  • Ohnaka, M., Earthquake source nucleation: a physical model for short-term precursors, Tectonophysics, 211, 149–178, 1992.

    Google Scholar 

  • Ohnaka, M., Critical size of the nucleation zone of earthquake rupture inferred from immediate foreshock activity, J. Phys. Earth, 41, 45–56, 1993.

    Google Scholar 

  • Ohnaka, M., A shear failure strength law of rock in the brittle-plastic transition regime, Geophys. Res. Lett., 22, 25–28, 1995.

    Google Scholar 

  • Ohnaka, M., Nonuniformity of the constitutive law parameters for shear rupture and quasistatic nucleation to dynamic rupture: A physical model of earthquake generation processes, Proc. Natl. Acad. Sci. USA, 93, 3795–3802, 1996.

    Google Scholar 

  • Ohnaka, M., Earthquake generation processes and earthquake prediction: Implications of the underlying physical law and seismogenic environments, J. Seismol. Soc. Japan, Second Series, 50 (Supplement), 129–155, 1998.

    Google Scholar 

  • Ohnaka, M., A physical scaling relation between the size of an earthquake and its nucleation zone size, Pure Appl. Geophys., 157, 2259–2282, 2000.

    Google Scholar 

  • Ohnaka, M., A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture, J. Geophys. Res., 108 (B2), 2080, doi: 10.1029/2000JB000123, 2003.

    Google Scholar 

  • Ohnaka, M., A constitutive scaling law for shear rupture that is inherently scale-dependent, and physical scaling of nucleation time to critical point, Pure Appl. Geophys., 2004 (in press).

    Google Scholar 

  • Ohnaka, M. and Y. Kuwahara, Characteristic features of local breakdown near a crack-tip in the transition zone from nucleation to unstable rupture during stick-slip shear failure, Tectonophysics, 175, 197–220, 1990.

    Google Scholar 

  • Ohnaka, M. and L.-f. Shen, Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surfaces, J. Geophys. Res., 104, 817–844, 1999.

    Google Scholar 

  • Ohnaka, M. and T. Yamashita, A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters, J. Geophys. Res., 94, 4089–4104, 1989.

    Google Scholar 

  • Ohnaka, M., Y. Kuwahara, and K. Yamamoto, Constitutive relations between dynamic physical parameters near a tip of the propagating slip zone during stick-slip shear failure, Tectonophysics, 144, 109–125, 1987.

    Google Scholar 

  • Ohnaka, M., Y. Kuwahara, K. Yamamoto, and T. Hirasawa, Dynamic breakdown processes and the generating mechanism for high-frequency elastic radiation during stick-slip instabilities, in Earthquake Source Mechanics, edited by S. Das, J. Boatwright, and C. H. Scholz, Geophysical Monograph, 37, pp. 13–24, American Geophysical Union, Washington, D.C., 1986.

    Google Scholar 

  • Ohnaka, M., S. Yoshida, L.-f. Shen, and H. Mochizuki, Slip-failure nucleation processes and microseismicity, Seismol. Soc. Japan, Programme and Abstracts, Fall Meeting, No. 2, p. 298, 1993.

    Google Scholar 

  • Ohnaka, M., M. Akatsu, H. Mochizuki, A. Odedra, F. Tagashira, and Y. Yamamoto, A constitutive law for the shear failure of rock under lithospheric conditions, Tectonophysics, 277, 1–27, 1997.

    Google Scholar 

  • Okubo, P. G., Dynamic rupture modeling with laboratory-derived constitutive relations, J. Geophys. Res., 94, 12321–12335, 1989.

    Google Scholar 

  • Okubo, P. G. and J. H. Dieterich, State variable fault constitutive relations for dynamic slip, in Earthquake Source Dynamics, edited by S. Das, J. Boatwright, and C. H. Scholz, Geophysical Monograph, 37, pp. 25–35, American Geophysical Union, Washington, D.C., 1986.

    Google Scholar 

  • Palmer, A. C. and J. R. Rice, The growth of slip surfaces in the progressive failure of over-consolidated clay, Proc. Roy. Soc. London, A 332, 527–548, 1973.

    Google Scholar 

  • Papageorgiou, A. S. and K. Aki, A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. Part II. Applications of the model, Bull. Seismol. Soc. Amer., 73, 953–978, 1983.

    Google Scholar 

  • Rice, J. R., The mechanics of earthquake rupture, in Physics of the Earth’s Interior, edited by A. M. Dziewonski and E. Boschi, pp. 555–649, North-Holland, Amsterdam, 1980.

    Google Scholar 

  • Rice, J. R., Constitutive relations for fault slip and earthquake instabilities, Pure Appl. Geophys., 121, 443–475, 1983.

    Google Scholar 

  • Rice, J. R., Shear instability in relation to the constitutive description of fault slip, Proceedings of the 1st International Congress on Rockbursts and Seismicity in Mines, pp. 57–62, Johannesburg, 1984.

    Google Scholar 

  • Rice, J. R. and A. L. Ruina, Stability of steady frictional slipping, J. Appl. Mech., Trans. ASME, 50, 343–349, 1983.

    Google Scholar 

  • Rudnicki, J. W., Fracture mechanics applied to the Earth’s crust, Ann. Rev. Earth Planet. Sci., 8, 489–525, 1980.

    Google Scholar 

  • Rudnicki, J. W., Physical models of earthquake instability and precursory processes, Pure Appl. Geophys., 126, 531–554, 1988.

    Google Scholar 

  • Ruina, A., Slip instability and state variable friction laws, J. Geophys. Res., 88, 10359–10370, 1983.

    Google Scholar 

  • Ruina, A. L., Constitutive relations for frictional slip, in Mechanics of Geomaterials, edited by Z. Bazant, pp. 169–188, John Wiley, New York, 1985.

    Google Scholar 

  • Rundle, J. B., W. Klein, D. L. Turcotte, and B. D. Malamud, Precursory seismic activation and critical-point phenomena, Pure Appl. Geophys., 157, 2165–2182, 2000.

    Google Scholar 

  • Saito, M., Forecasting time of slope failure by tertiary creep, Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, 2, 677–683, 1969.

    Google Scholar 

  • Schwartz, D. P. and K. J. Coppersmith, Fault behavior and characteristic earthquakes: Examples from theWasatch and San Andreas fault zones, J. Geophys. Res., 89, 5681–5698, 1984.

    Google Scholar 

  • Shibazaki, B. and M. Matsu’ura, Spontaneous processes for nucleation, dynamic propagation, and stop of earthquake rupture, Geophys. Res. Lett., 19, 1189–1192, 1992.

    Google Scholar 

  • Shibazaki, B. and M. Matsu’ura, Foreshocks and pre-events associated with the nucleation of large earthquakes, Geophys. Res. Lett., 22, 1305–1308, 1995.

    Google Scholar 

  • Shibazaki, B. and M. Matsu’ura, Transition process from nucleation to highspeed rupture propagation: Scaling from stick-slip experiments to natural earthquakes, Geophys. J. Int., 132, 14–30, 1998.

    Google Scholar 

  • Sieh, K., The repetition of large-earthquake ruptures, Proc. Natl. Acad. Sci. USA, 93, 3764–3771, 1996.

    Google Scholar 

  • Sykes, L. R. and S. P. Nishenko, Probabilities of occurrence of large plate rupturing earthquakes for the San Andreas, San Jacinto, and Imperial faults, California, 1983–2003, J. Geophys. Res., 89, 5905–5927, 1984.

    Google Scholar 

  • Tanaka, S., M. Ohtake, and H. Sato, Evidence for tidal triggering of earthquakes as revealed from statistical analysis of global data, J. Geophys. Res., 107 (B10), 2211, doi:10.1029/ 2001JB001577, 2002.

    Google Scholar 

  • Tullis, T. E. and J. D. Week, Constitutive behavior and stability of frictional sliding of granite, Pure Appl. Geophys., 124, 383–414, 1986.

    Google Scholar 

  • Uenishi, K. and J. R. Rice, Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading, J. Geophys. Res., 108 (B01), 2042, doi: 10.1029/2001JB001681, 2003.

    Google Scholar 

  • Utsu, T., Estimation of parameters for recurrence models of earthquakes, Bull. Earthquake Res. Inst., University of Tokyo, 59, 53–66, 1984.

    Google Scholar 

  • Utsu, T., Seismicity patterns and long-term prediction of large earthquakes—Seismic cycles, gaps, quiescence, precursory activities, migration, correlation, etc.—, J. Seismol. Soc. Japan, Second Series, 50 (Supplement), 73–82, 1998.

    Google Scholar 

  • Utsu, T., Seismicity Studies: A Comprehensive Review, 876 pp., University of Tokyo Press, Tokyo, 1999.

    Google Scholar 

  • Utsu, T., Statistical features of seismicity, in International Handbook of Earthquake and Engineering Seismology, Part A, edited by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, pp. 719–732, Academic Press, New York, 2002.

    Google Scholar 

  • Varnes, D. J., Predicting earthquakes by analyzing accelerating precursory seismic activity, Pure Appl. Geophys., 130, 661–686, 1989.

    Google Scholar 

  • Yamashita, T. and M. Ohnaka, Nucleation process of unstable rupture in the brittle regime: A theoretical approach based on experimentally inferred relations, J. Geophys. Res., 96, 8351–8367, 1991.

    Google Scholar 

  • Yin, X.-C., X.-Z. Chen, Z.-P. Song, and C. Yin, A new approach to earthquake prediction: The load/unload response ratio (LURR) theory, Pure Appl. Geophys., 145, 701–715, 1995.

    Google Scholar 

  • Yin, X.-C., Y.-C. Wang, K.-Y. Peng, Y.-L. Bai, H.-T. Wang, and X.-F. Yin, Development of a new approach to earthquake prediction: Load/unload response ratio (LURR) theory, Pure Appl. Geophys., 157, 2365–2383, 2000.

    Google Scholar 

  • Yin, X.-C., P. Mora, K. Peng, Y. C. Wang, and D. Weatherley, Load-unload response ratio and accelerating moment/energy release critical region scaling and earthquake prediction, Pure Appl. Geophys., 159, 2511–2523, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohnaka, M. Earthquake cycles and physical modeling of the process leading up to a large earthquake. Earth Planet Sp 56, 773–793 (2004). https://doi.org/10.1186/BF03353085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353085

Key words