Skip to main content

Compressional and shear wave velocities of serpentinized peridotites up to 200 MPa

Abstract

Compressional and shear wave velocities of serpentinized peridotites were measured at room temperature and high confining pressures of up to 200 MPa. Rock samples were collected from the Hida outer belt, Central Japan, and classified into High-T (containing antigorite) and Low-T (containing lizardite and/or chrysotile) types. Antigorite is stable up to 600700°C, while lizardite and chrysotile are stable below 300°C. High-T type samples have distinctly higher velocities than their Low-T type counterparts with the same density. The High-T type with strong foliation shows significant velocity anisotropy, and the azimuthal anisotropy of the compressional wave velocity reaches 30%. These properties can be explained by the crystallographic structure of antigorite. Poisson’s ratio increases with serpentinization in both types. The High-T type shows a lower Poisson’s ratio than the Low-T type with the same density. The High-T type requires a higher degree of serpentinization than the Low-T type to give a certain value of Poisson’s ratio. Observations of high Poisson’s ratio have been interpreted using Low-T type properties. However, High-T type serpentinized peridotite is expected in warm subduction zones. The use of Low-T type properties will lead to a significant underestimation of serpentinization. For good interpretations, it is essential to use the properties of the appropriate type of serpentinized peridotite.

References

  • Babuska, V. and M. Cara, Seismic Anisotropy in the Earth, Kluwer Academic Publishers, 217 pp., 1991.

    Book  Google Scholar 

  • Birch, F., The velocity of compressional waves in rocks to 10 kilobars, Part 1, J. Geophys. Res., 65, 1083–1102, 1960.

    Article  Google Scholar 

  • Birch, F., The velocity of compressional waves in rocks to 10 kilobars, Part 2, J. Geophys. Res., 66, 2199–2224, 1961.

    Article  Google Scholar 

  • Bostock, M. G., R. D. Hyndman, S. Rondenay, and S. M. Peacock, An inverted continental Moho and serpentinization of the forearc mantle, Nature, 417, 536–538, 2000.

    Article  Google Scholar 

  • Carlson, R. L. and D. J. Miller, Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites, Geophys. Res. Lett., 30, 1250–1253, 2003.

    Article  Google Scholar 

  • Chihara, K., M. Komatsu, T. Uemura, Y. Hasegawa, S. Shiraishi, T. Yoshimura, and M. Nakamizu, Geology and tectonics of the Omi-Renge and Joetsu tectonic belts, Sci. Rept. Niigata Univ., Ser. E, 5, 1–61, 1979.

    Google Scholar 

  • Christensen, N. I., Elasticity of ultrabasic rocks, J. Geophys. Res., 71, 5921–5931, 1966.

    Article  Google Scholar 

  • Christensen, N. I., The abundance of serpentinites in the oceanic crust, J. Geol., 80, 709–719, 1972.

    Article  Google Scholar 

  • Christensen, N. I., Ophiolites, seismic velocities and oceanic crustal structure, Tectonophys., 47, 131–157, 1978.

    Article  Google Scholar 

  • Christensen, N. I., Pore pressure and oceanic crustal seismic structure, Geophys. J. R. astr Soc., 79, 411–423, 1984.

    Article  Google Scholar 

  • Christensen, N. I., Poisson’s ratio and crustal seismology, J. Geophys. Res., 101, 3139–3156, 1996.

    Article  Google Scholar 

  • DeShon, H. and S. Y. Schwartz, Evidence for serpentinization of the fore-arc mantle wedge along the Nicoya Peninsula, Costa Rica, Geophys. Res. Lett., 31, L21611, doi:10.1029/2004GL021179, 2004.

    Article  Google Scholar 

  • Dewandel, B., F. Boudier, H. Kern, W. Warsi, and D. Mainprice, Seismic wave velocity and anisotropy of serpentinized peridotite in the Oman ophiolite, Tectonophys., 370, 77–94, 2003.

    Article  Google Scholar 

  • Evans, B. W., W. Johannes, H. Oterdoom, and V. Trommsdorf, Stability of chrysotile and antigorite in the serpentine multisystem, Schweiz Mineral. Petrogr. Mitt., 56, 79–93, 1976.

    Google Scholar 

  • Graeber, F. M. and G. Asch, Three-dimensional models of P wave velocity and P-to-S ratio in the southern central Andes by simultaneous inversion of local earthquake data, J. Geophys. Res., 104, 20237–20256, 1999.

    Article  Google Scholar 

  • Horen, H., M. Zamora, and G. Dubuisson, Seismic wave velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge, Geophys. Res. Lett., 23, 9–12, 1996.

    Article  Google Scholar 

  • Iwamori, H., Transportation of H2O and melting in subduction zones, Earth Planet. Sci. Lett., 160, 65–80, 1998.

    Article  Google Scholar 

  • Iwamori, H., Deep subduction of H2O and deflection of volcanic chain towards backarc near triple junction due to lower temperature, Earth Planet. Sci. Lett., 181, 41–46, 2000.

    Article  Google Scholar 

  • Johnson, G. R. and G. R. Olhoeft, Densities of rocks and minerals, in Practical Handbook of Physical Properties of Rocks and Minerals vol. III, edited by R. S. Carmichael, 1–38, 1984.

    Google Scholar 

  • Kamiya, S. and Y. Kobayashi, Seismological evidence for the existence of serpentinized wedge mantle, Geophys. Res. Lett., 27, 819–822, 2000.

    Article  Google Scholar 

  • Kern, H. B. and J. M. Tubia, Pressure and temperature dependence of P-and S-wave velocities, seismic anisotropy and density of sheared rocks from Sierra Alpujata massif (Ronda peridotites, Southern Spain), Earth Planet. Sci. Lett., 119, 191–205, 1993.

    Article  Google Scholar 

  • Kern, H., B. Liu, and T. Popp, Relationship between anisotropy of P and S wave velocities and anisotropy attenuation in serpentinite and amphibolite, J. Geophys. Res., 102, 3051–3065, 1997.

    Article  Google Scholar 

  • Kumazawa, M. and O. L. Anderson, Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal olivine and single-crystal forsterite, J. Geophys. Res., 74, 5961–5972, 1969.

    Article  Google Scholar 

  • Nesse, W. D., Introduction to Optical Mineralogy, 3rd ed., Oxford University Press, 348 pp., 2004.

    Google Scholar 

  • O’Connell, R. J. and B. Budiansky, Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79, 5412–5426, 1974.

    Article  Google Scholar 

  • O’Hanley, D. S., A chemographic analysis of magnesian serpentinites using dual networks, Can. Mineral., 25, 121–133, 1987.

    Google Scholar 

  • O’Hanley, D. S., Serpentinites, Records of Tectonic and Petrological History, Oxford University Press, 277 pp., 1996.

    Google Scholar 

  • Peacock, S. M. and R. D. Hyndman, Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes, Geophys. Res. Lett., 26, 2517–2520, 1999.

    Article  Google Scholar 

  • Peacock, S. M. and K. Wang, Seismic consequences of warm versus cool subduction metamorphism: examples from Southwest and Northwest Japan, Science, 286, 937–939, 1999.

    Article  Google Scholar 

  • Sanford, R. F., Mineralogical and chemical effects of hydration reactions and applications to serpentinizations, Am. Mineral., 66, 290–297, 1981.

    Google Scholar 

  • Sano, O., Y. Kudo, and Y. Mizuta, Experimental determination of elastic constants of Ohshima granite, Barrea granite, and Chelmsford granite, J. Geophys. Res., 97, 3367–3379, 1992.

    Article  Google Scholar 

  • Ulmer, P. and V. Trommsdorff, Serpentinite stability to mantle depths and subduction-related magmatism, Science, 268, 858–861, 1995.

    Article  Google Scholar 

  • Wicks, F. J. and D. S. O’Hanley, Serpentine minerals: structures and petrology, in Reviews in Mineralogy, vol. 19: Hydrous Phyllosilicates, edited by S. W. Bailey, 91–167, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Watanabe.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Watanabe, T., Kasami, H. & Ohshima, S. Compressional and shear wave velocities of serpentinized peridotites up to 200 MPa. Earth Planet Sp 59, 233–244 (2007). https://doi.org/10.1186/BF03353100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353100

Key words

  • Seismic velocity
  • serpentinized peridotite
  • antigorite
  • Poisson’s ratio