Skip to main content

Long-term stability of climate and global glaciations throughout the evolution of the Earth

Abstract

Earth’s climate is considered to be stable on the order of > 106 years, owing to a negative feedback mechanism in a carbon cycle system. However, any decrease in net input flux of CO2 to the atmosphere-ocean system (i.e., volcanic-metamorphic CO2 flux minus excess organic carbon burial flux) lowers the surface temperature and would eventually initiate global glaciation. The F D -F B O diagram (F D : the total CO2 degassing flux, F B O : the organic carbon burial flux) is proposed as a measure of the susceptibility of the Earth to global glaciations. By using this diagram with the carbon fluxes estimated from a carbon cycle model during the Phanerozoic, the net input flux of CO2 is found to have been very close to the critical condition for a global glaciation at the Late Paleozoic. During the Proterozoic, a carbon isotope mass balance model with this diagram shows that global glaciations occurred probably due to a decrease in the CO2 degassing in addition to an increase in the organic carbon burial. Because the Sun becomes brighter as it evolves, the critical level of atmospheric CO2 pressure to cause global glaciation will be lower than the critical CO2 pressure for photosynthesis of C4 plants within 500 million years. At this point, the net input flux of CO2 will be too large to cause global glaciations. Continuous volcanic-metamorphic activities (i.e., plate tectonics) may be one of the necessary conditions for the Earth and Earth-like planets in extrasolar planetary systems to keep liquid water and life over the timescales of planetary evolution.

References

  • Berner, R. A., Paleozoic atmospheric CO2: importance of Solar Radiation and plant evolution, Science, 261, 68–70, 1993.

    Article  Google Scholar 

  • Berner, R. A., GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 294, 56–91, 1994.

    Article  Google Scholar 

  • Berner, R. A., The rise of plants and their effect on weathering and atmospheric CO2, Science, 276, 544–546, 1997.

    Article  Google Scholar 

  • Berner, R. A., A. C. Lasaga, and R. M. Garrels, The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years, Am. J. Sci., 283, 641–683, 1983.

    Article  Google Scholar 

  • Broecker, W. S. and A. Sanyal, Does atmospheric CO2 police the rate of chemical weathering?, GlobalBiogeochem. Cycles, 12, 403–408, 1998.

    Article  Google Scholar 

  • Caldeira, K. and J. F. Kasting, Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds, Nature, 359, 226–228, 1992.

    Article  Google Scholar 

  • Canfield, D. E., The early history of atmospheric oxygen, Annu Rev. Earth Planet. Sci., 33, 1–36, 2005.

    Article  Google Scholar 

  • Christensen, U. R., Thermal evolution models for the Earth, J. Geophys. Res., 90, 2995–3007, 1985.

    Article  Google Scholar 

  • Donnadieu, Y., Y. Godderis, G. Ramstein, A. Nedelec, and J. Meert, A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff, Nature, 428, 303–306, 2004a.

    Article  Google Scholar 

  • Donnadieu, Y., G. Ramstein, F. Fluteau, D. Roche, and A. Ganopolski, The impact of atmospheric and oceanic heat transports on the sea-ice-albedo instability during the Neoproterozoic, Climate Dynamics, 22, 293–306, 2004b.

    Article  Google Scholar 

  • Evans, D. A., Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox, Am. J. Sci., 300, 374–433, 2000.

    Article  Google Scholar 

  • Evans, D. A., N. J. Beukes, and J. L. Kirschvink, Low-latitude glaciation in the Paleoproterozoic era, Nature, 386, 262–266, 1997.

    Article  Google Scholar 

  • Frakes, L. A. and J. E. Francis, A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous, Nature, 333, 547–549, 1988.

    Article  Google Scholar 

  • Frakes, L. A., J. E. Francis, and J. I. Syktus, Climate Modes of the Phanerozoic, 274 pp., Cambridge Univ. Press, Cambridge, 1992.

    Book  Google Scholar 

  • Gough, D. O., Solar interior structure and luminosity variations, Sol. Phys., 74, 21–34, 1981.

    Article  Google Scholar 

  • Hayes, J. M., H. Strauss, and A. J. Kaufman, The abundance of δ13C in marine organic matter and isotopic fractionation in the global biogeo-chemical cycle of carbon during the past 800 Ma, Chem. Geol., 161, 103–125, 1999.

    Article  Google Scholar 

  • Hoffman, P. F. and D. P. Schrag, The snowball Earth hypothesis: testing the limits of global change, Tera Nova, 14, 129–155, 2002.

    Article  Google Scholar 

  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag, A Neoproterozoic Snowball Earth, Science, 281, 1342–1346, 1998.

    Article  Google Scholar 

  • Hyde, W. T., T. J. Crowley, S. K. Baum, and W. R. Peltier, Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model, Nature, 405, 425–429, 2000.

    Article  Google Scholar 

  • Ikeda, T. and E. Tajika, A study of the energy balance climate model with CO2-dependent outgoing radiation: implication for the glaciation during the Cenozoic, Geophys. Res. Lett., 26, 349–352, 1999.

    Article  Google Scholar 

  • Jenkins, G. S. and S. R. Smith, GCM simulations of snowball Earth conditions during the late Proterozoic, Geophys. Res. Lett., 26, 2263–2266, 1999.

    Article  Google Scholar 

  • Kasting, J. F., Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere, Precambrian Res., 34, 205–229, 1989.

    Article  Google Scholar 

  • Kasting, J. F and O. B. Toon, Climate evolution on the terrestrial planets, in Origin and Evolution of Planetary and Satellite Atmospheres, edited by M. S. Matthews, J. B. Pollack, and S. K. Atreya, 881 pp., Univ. of Arizona, Tucson, 423–449, 1989.

    Google Scholar 

  • Kaufman, A. T., A. H. Knoll, and G. M. Narbonne, Isotopes, ice ages, and terminal Proterozoic earth history, Nat. Acad. Sci. Proc, 94, 6600–6605, 1997.

    Article  Google Scholar 

  • Kirschvink, J. L., Late Proterozoic low-latitude global glaciation: the Snowball Earth, in The Proterozoic Biosphere, edited by J. W. Schopf and C. Klein, 1348 pp., Cambridge Univ. Press, 51–52, 1992.

    Google Scholar 

  • Kirschvink, J. L., When all of the oceans were frozen, La Recherche, 355, 26–30, 2002 (in French).

    Google Scholar 

  • Kirschvink, J. L., E. J. Gaidos, L. E. Bertani, N. J. Beukes, J. Gutzmer, L. N. Maepa, and R. E. Steinberger, Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences, Proc. Natl. Sci. Acad., 97, 1400–1405, 2000.

    Article  Google Scholar 

  • Lasaga, A. C., R. A. Berner, and R. M. Garrels, An improved geochemical model of atmospheric CO2 fluctuations over past 100 million years, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, edited by E. T. Sundquist and W. S. Broecker, 635 pp., American Geophysical Union, Washington, DC, 397–411, 1985.

    Chapter  Google Scholar 

  • Marty, B. and I. N. Tolstikhn, CO2 fluxes from mid-ocean ridges, arcs and plumes, Chem. Geol., 145, 233–248, 1998.

    Article  Google Scholar 

  • Mora, C. I., S. G. Driese, and L. Colarusso, Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter, Science, 271, 1105–1107, 1996.

    Article  Google Scholar 

  • North, G. R., R. F. Cahalan, and J. A. Coakley, Energy balance climate models, Rev. Geophys. Space Phys., 19, 91–121, 1981.

    Article  Google Scholar 

  • Rino, S., T. Komiya, B. F. Windley, I. Katayama, A. Motoki, and T. Hirata, Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian, Phys. Earth Planet. Int., 146, 369–394, 2004.

    Article  Google Scholar 

  • Sano, Y. and S. N. Williams, Fluxes of mantle and subducted carbon along convergent plate boundaries, Geophys. Res. Lett., 23, 2749–2752, 1996.

    Article  Google Scholar 

  • Schwartzman, D. W. and T. Volk, Biotic enhancement of weathering and the habitability of Earth, Nature, 340, 457–460, 1989.

    Article  Google Scholar 

  • Tajika, E., Climate change during the last 150 million years: Reconstruction from a carbon cycle model, Earth Planet. Sci. Lett., 160, 695–707, 1998.

    Article  Google Scholar 

  • Tajika, E., Carbon cycle and climate change during the Cretaceous inferred from a carbon biogeochemical cycle model, The Island Arc, 8, 293–303, 1999.

    Article  Google Scholar 

  • Tajika, E., Faint young Sun and the carbon cycle: Implication for the Proterozoic global glaciations, Earth Planet. Sci. Lett., 214, 443–453, 2003.

    Article  Google Scholar 

  • Tajika, E., Analysis of carbon cycle system during the Neoproterozoic: Implication for snowball Earth events, in Multidisciplinary Studies Exploring Extreme Proterozoic Environment Conditions, edited by G. Jenkins, C. Mckay, and L. Sohl, 220 pp., AGU Geophysical Monograph, American Geophysical Union, 146, 45–54, 2004.

    Google Scholar 

  • Tajika, E. and T. Matsui, The evolution of the terrestrial environment, in Origin of the Earth, edited by H. E. Newsom and J. H. Jones, 378 pp., Oxford Univ. Press, New York, N.Y, pp. 347–370, 1990.

    Google Scholar 

  • Tajika, E. and T. Matsui, Evolution of terrestrial proto-CO2-atmosphere coupled with thermal history of the Earth, Earth Planet. Sci. Lett., 113, 251–266, 1992.

    Article  Google Scholar 

  • Tajika, E. and T. Matsui, Degassing history and carbon cycle: From an impact-induced steam atmosphere to the present atmosphere, Lithos, 30, 267–280, 1993.

    Article  Google Scholar 

  • Walker, J. C. G., Climatic factors on the Archean Earth, Palaeogeogr. Palaeoclimat. Palaeoecol., 40, 1–11, 1982.

    Article  Google Scholar 

  • Walker, J. C. G., P. B. Hays, and J. F. Kasting, A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature, J. Geophys. Res., 86, 9776–9782, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Tajika.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Tajika, E. Long-term stability of climate and global glaciations throughout the evolution of the Earth. Earth Planet Sp 59, 293–299 (2007). https://doi.org/10.1186/BF03353107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353107

Key words

  • Carbon cycle
  • global glaciation
  • snowball Earth
  • astrobiology