Skip to main content

Electromagnetic full particle simulation of the electric field structure around the moon and the lunar wake

Abstract

The electric field structure around the moon is studied using a 2-dimensional electromagnetic full particle simulation. By considering absorption of the plasma particles at the surface of the moon, we obtain an intense electric field at the terminator region where the electric field produced by the negatively charged lunar surface and the ambipolar electric field at the wake boundary are in the same direction. The intensity of the electric field is 2.2E0 (E0 = m0υ e ω p /q0) at the terminator, corresponding to 3.5 V m−1 in the solar wind. It has a large horizontal component due to the potential difference between the negatively charged, antisolarside surface of the moon and the electrically neutral, solar-side surface, even though the emission of photoelectrons are not taken into consideration in this study. The half width of the electric field structure is of the order of Debye shielding length. The electric field at the downstream wake boundary at x = 6.5R L is stillas large as 0.1E0 0.16 V m−1, which is strong enough to cause the pitch angle diffusion of the solar-wind electron beam, as is expected in the generation mechanism of the wake-related whistler wave. The ion acceleration occurs in the close vicinity of the moon and can be explained by the acceleration by the electric field produced by the surface charging of the moon.

References

  • Beers, B. L., Numerical calculation of the lunar wake in a magnetohydro-dynamic model, Phys. Fluids, 15, 1450–1456, 1972.

    Article  Google Scholar 

  • Beers, B. L., Erratum: Numerical calculation of the lunar wake in a mag-netohydrodynamic model, Phys. Fluids, 16, 456, 1973.

    Article  Google Scholar 

  • Birdsall, C. K. and A. B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985.

    Google Scholar 

  • Birch, P. C. and S. C. Chapman, Correction to “Particle-in-cell simulations of the lunar wake with high phase resolution”, Geophys. Res. Lett., 28, 2669, 2001.

    Article  Google Scholar 

  • Birch, P. C. and S. C. Chapman, Two dimensional particle-in-cell simulations of the lunar wake, Phys. Plasmas, 9, 1785–1789, 2002.

    Article  Google Scholar 

  • Colburn, D. S., R. G. Currie, J. D. Mihalov, and C. P. Sonett, Diamagnetic solar-wind cavity discovered behind moon, Science, 158, 1040–1042, 1967.

    Article  Google Scholar 

  • Fahleson, U., Theory of electric field measurements conducted in the mag-netosphere with electric probes, Space Sci. Rev., 7, 238–262, 1967.

    Article  Google Scholar 

  • Farrell, W. M., R. J. Fitzenreiter, C. J. Owen, J. B. Byrnes, R. P. Lepping, K. W. Ogilvie, and F. Neubauer, Upstream ULF waves and energetic electrons associated with the lunar wake: Detection of precursor activity, Geophys. Res. Lett., 23, 1271–1274, 1996.

    Article  Google Scholar 

  • Farrell, W. M., M. L. Kaiser, J. T. Steinberg, and S. D. Bale, A simple simulation of a plasma void: Applications to Wind observations of the lunar wake, J. Geophys. Res., 103, 23635–23653, 1998.

    Google Scholar 

  • Futaana, Y, S. Machida, and T. Saito, A. Matsuoka, and H. Hayakawa, Counterstreaming electrons in the near vicinity of the moon observed by plasma instruments on board NOZOMI, J. Geophys. Res., 106, 18729–18740, 2001.

    Article  Google Scholar 

  • Guio, P. and H. L. Pécseli, Phase space structures generated by an absorbing obstacle in a streaming plasma, Geophys. Res. Lett., 31, L03806, 2004.

    Article  Google Scholar 

  • Guio, P. and H. L. Pécseli, Phase space structures generated by absorbing obstacles in streaming plasmas, Ann. Geophys., 23, 853–865, 2005.

    Article  Google Scholar 

  • Halekas, J. S., D. L. Mitchell, R. P. Lin, L. L. Hood, M. N. Acuna, and A. B. Binder, Evidence for negative charging of the lunar surface in shadow, Geophys. Res. Lett., 29,77, doi:10.1029/2001GL014428, 2002.

    Google Scholar 

  • Halekas, J. S., R. P. Lin, and D. L. Mitchell, Inferring the scale height of the lunar nightside double layer, Geophys. Res. Lett., 30, PLA1, 2117, doi:10.1029/2003GL018421, 2003.

    Google Scholar 

  • Halekas, J. S., S. D. Bale, D. L. Mitchell, and R. P. Lin, Electrons and mag-netic fields in the lunar plasma wake, J. Geophys. Res., 110, A07222, doi:10.1029/2004JA010991, 2005.

    Google Scholar 

  • Kallio, E., Formation of the lunar wake in quasi-neutral hybrid model, Geophys. Res. Lett., 32, L06107, doi:10.1029/2004GL021989, 2005.

    Article  Google Scholar 

  • Kellogg, P. J., K. Goetz, and S. J. Monson, Observation of lunar plasma waves during a travel f the moon’s wake, Geophys. Res. Lett., 23, 1267–1270, 1996.

    Article  Google Scholar 

  • Lipatov, A. S., Three dimensional structure of the plasma wake of the moon, Cosmic Res., 14, 103–106, 1976.

    Google Scholar 

  • Lyon, E. F, H. S. Bridge, and J. H. Binsak, Exploreer35 plasma measurements in the vicinity of the moon, J. Geophys. Res., 72, 6113, 1967.

    Article  Google Scholar 

  • Nakagawa, T. and M. Iizima, Pitch angle diffusion of electrons at the boundary of the lunar wake, Earth Planets Space, 57, 885–894, 2005.

    Article  Google Scholar 

  • Nakagawa, T. and M. Iizima, A reexamination of pitch angle diffusion of electrons at the boundary of the lunar wake, Earth Planets Space, 58, e17–e20, 2006.

    Article  Google Scholar 

  • Nakagawa, T., Y. Takahashi, and M. Iizima, GEOTAIL observation of upstream ULF waves associated with lunar wake, Earth Planets Space, 55, 569–580, 2003.

    Article  Google Scholar 

  • Ness, N. F, K. W. Behannon, H. E. Taylor, and Y C. Whang, Perturbations of the interplanetary magnetic field by the lunar wake, J. Geophys. Res., 73, 3421–3440, 1968.

    Article  Google Scholar 

  • Ogilvie, K. W., J. T. Steinberg, R. T. Fitzenreiter, C. J. Owen, A. J. Lazarus, W. M. Farrell, and R. B. Torbert, Observation of the lunar plasma wake from the WIND spacecraft on December 27, 1994, Geophys. Res. Lett., 23, 1255–1258, 1996.

    Article  Google Scholar 

  • Samir, U., K. H. Wright, Jr., and N. H. Stone, The expansion of a plasma into a vacuum: Basic Phenomena and processes and applications to space plasma physics, Rev. Geophys. Space Sci., 21, 1631–1646, 1983.

    Article  Google Scholar 

  • Schubert, G. and B. R. Lichtenstein, Observations of moon-plasma interactions by orbital and surface experiments, Rev. Geophys. Space Phys., 12, 592–626, 1974.

    Article  Google Scholar 

  • Trávníček, P., P. Hellinger, D. Schriver, and S. D. Bale, Structure of the lunar wake: Two-dimensional global hybrid simulations, Geophys. Res. Lett., 32, L06102, doi:10.1029/2004GL022243, 2005.

    Google Scholar 

  • Whang, Y C, Field and plasma in the lunar wake, Phys. Rev, 186, 143–150, 1969.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Nakagawa.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Kimura, S., Nakagawa, T. Electromagnetic full particle simulation of the electric field structure around the moon and the lunar wake. Earth Planet Sp 60, 591–599 (2008). https://doi.org/10.1186/BF03353122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353122

Key words