Skip to main content

Advertisement

You are viewing the new article page. Let us know what you think. Return to old version

Article | Open | Published:

Tracking F-region plasma depletion bands using GPS-TEC, incoherent scatter radar, and all-sky imaging at Arecibo

Abstract

F-region plasma dynamics has been one of the main foci of the ionospheric research community for decades. The mid-latitude F-region has been considered to be relatively calm; however recent observations using highly sensitive CCD imaging systems and Global Positioning System (GPS) receivers have revealed that mid-latitude F-region mesoscale electrodynamics are more complex and this region is more active than usually assumed. Here we report combined incoherent scatter radar (ISR), imager, and GPS observations of F-region Medium-Scale Traveling Ionospheric Disturbance (MSTID) structures over the Arecibo Observatory in Puerto Rico. In particular, the plasma structures seen in the narrow-beam ISR cannot be understood fully without the all-sky images, which provide the context for the radar results—specifically, the spatial and temporal properties of the mesoscale structure. The GPS-derived total electron content (TEC) data provide additional information on the intensity of the MSTIDs. Here we present analysis of two specific plasma depletion events, which we prefer to call “MSTID bands”. Important results on the 3D geometry of these structures were found using a newly developed observation technique. For the first time, it is shown that the southern part of MSTID bands reaches higher altitudes than the northern part (vertically tilted by 12° towards magnetic south). These results give a much broader perspective on nighttime, mid-latitude F-region structure and point to new ways of interpreting these structures and how they appear in ISR results.

References

  1. Aponte, N., S. A. Gonzalez, M. C. Kelley, C. A. Tepley, X. Pi, and B. Iijima, Advection of the equatorial anomaly over Arecibo by small-storm related disturbance dynamo electric fields, Geophys. Res. Lett., 27, 2833–2836, 2000.

  2. Colerico, M. J., M. Mendillo, D. Nottingham, J. Baumgardner, J. Meriwether, J. Mirick, B. W. Reinisch, J. L. Scali, C. G. Fesen, and M. A. Biondi, Coordinated measurements of F region dynamic related to the thermospheric midnight temperature maximum, J. Geophys. Res., 101, 26783–26793, 1996.

  3. Garcia, F J., M. C. Kelley, J. J. Makela, and C.-S. Huang, Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes, J. Geophys. Res., 105, 18407–18415, 2000.

  4. Herrero, F. A. and J. W. Meriwether, 6300-A° airglow meridional intensity gradients, J. Geophys. Res., 85, 4191–4204, 1980.

  5. Kelley, M. C. and J. J. Makela, Resolution of the discrepancy between experiment and theory of midlatitude F-region structures, Geophys. Res. Lett., 28, 2589–2592, 2001.

  6. Kelley, M. C, J. J. Makela, W. E. Swartz, S. C. Collins, S. Thonnard, N. Aponte, and C. A. Tepley, Caribbean ionosphere campaign, year one: Airglow and plasma observations during two intense mid-latitude spread-F events, Geophys. Res. Lett., 27, 2825–2828, 2000a.

  7. Kelley, M. C, J. J. Makela, and A. Saito, On the electrical structure of airglow depletion/height layer bands over Arecibo, Geophys. Res. Lett., 27, 2837–2840, 2000b.

  8. Kelley, M. C, J. J. Makela, and A. Saito, The mid-latitude F region at the mesoscale: some progress at last, J. Atmos. Solar-Terr. Phys., 64, 1525–1529, 2002.

  9. Kelley, M. C, C. Haldoupis, M. J. Nicolls, J. J. Makela, A. Belehaki, S. Shalimov, and V. K. Wong, Case studies of coupling between the E and F regions during unstable sporadic-E conditions, J. Geophys. Res., 108(A12), 1447, doi:10.1029/2003JA009955, 2003a.

  10. Kelley, M. C, J. J. Makela, M. N. Vlasov, and A. Sur, Further studies of the Perkins stability during space weather month, J. Atmos. Solar-Terr. Phys., 65, 1071–1075, 2003b.

  11. Kelley, M. C, J. J. Makela, L. J. Paxton, F Kamalabadi, J. M. Comberi-ate, and H. Kil, The first coordinated ground- and space-based optical observations of equatorial plasma bubbles, Geophys. Res. Lett., 30(14), 1766, doi:10.1029/2003GL017301, 2003c.

  12. Kelley, M. C, W. E. Swartz, and J. J. Makela, Mid-latitude ionospheric fluctuation spectra due to secondary ExB instabilities, J. Atmos. and Solar-Terr Phys., 66(17), 1559–1565, 2004.

  13. Kil, H., S.-Y. Su, L. J. Paxton, B. C. Wolven, Y. Zhang, D. Morrison, and H. C. Yeh, Coincident equatorial ubble detection by TIMED/GUVI and ROSCAT-1, Geophys. Res. Lett., 31, L03809, doi: 10.1029/2003GL018696, 2004.

  14. Link, R. and L. L. Cogger, A reexamination of the OI 6300-A° nightglow, J. Geophys. Res., 93, 9883, 1988.

  15. Livneh, D. J., I. Seker, J. D. Mathews, and F T. Djuth, Continuous quasi-periodic thermospheric waves over Arecibo, J. Geophys. Res., 112, A07313, doi:10.1029/2006JA012225, 2007.

  16. Makela, J. J., A review of imaging low-latitude ionospheric irregularity processes, J. Atmos. Solar-Terr Phys., 68, 1441–1458, 2006.

  17. Makela, J. J., S. A. González, B. MacPherson, X. Pi, M. C. Kelley, and P. J. Sultan, Intercomparisons of total electron content measurements using the Arecibo incoherent scatter radar and GPS, Geophys. Res. Lett., 27, 2841–2844, 2000.

  18. Makela, J. J., M. C. Kelley, J. J. Sojka, X. Pi, and A. J. Mannucci, GPS normalization and preliminary modeling results of total electron content during a midlatitude space weather event, Radio Sci., 36, 351–361, 2001a.

  19. Makela, J. J., M. C. Kelley, S. A. González, N. Aponte, and R. P. McCoy, Ionospheric topography maps using multiple-wavelength all-sky images, J. Geophys. Res., 106, 29161–29174, 2001b.

  20. Mathews, J. D., The incoherent scatter radar as a tool for studying the ionospheric D region, J. Atmos. Terr. Phys., 46, 975–986, 1984.

  21. Mathews, J. D., Incoherent scatter radar probing of the 60-100 km atmosphere and ionosphere, IEEE Trans. Geosci. Remote Sensing, GE-24, 765–776, 1986.

  22. Mathews, J. D., D. W. Machuga, and Q. Zhou, Evidence for electrody-namic linkages between spread-F, ion rain, the intermediate layer, and sporadic E: results from observations and simulations, J. Atmos. Solar-Terr. Phys., 63, 1529–1543, 2001.

  23. Mendillo, M., J. Baumgardner, D. Nottingham, J. Aarons, B. Reinisch, J. Scali, and M. C. Kelley, Investigations of thermospheric-ionospheric dynamics with 6300-A° images from the Arecibo Observatory, J. Geophys. Res., 102, 7331–7343, 1997.

  24. Nelson, G. J. and L. L. Cogger, Dynamical behavior of the nighttime ionosphere over Arecibo, J. Atmos. Terr. Phys., 33, 1711, 1971.

  25. Otsuka, Y., T. Kadota, K. Shiokawa, T. Ogawa, S. Kawamura, S. Fukao, and S.-R. Zhang, Optical and radio measurements of a 630-nm air-glow enhancement over Japan on 9 September 1999, J. Geophys. Res., 108(A6), 1252, doi:10.1029/2002JA009594, 2003.

  26. Perkins, F. W., Spread F and ionospheric currents, J. Geophys. Res., 78, 218–226, 1973.

  27. Pi, X., M. Mendillo, W. J. Hughes, M. J. Buonsanto, D. P. Sipler, J. Kelly, Q. Zhou, G. Lu, and T. J. Hughes, Dynamical effects of geomagnetic storms and substorms in the middle-latitude ionosphere: An observational campaign, J. Geophys. Res., 105, 7403–7417, 2000.

  28. Sahai, Y., P. R. Fagundes, and J. A. Bittencourt, Transequatorial F-region ionospheric plasma bubbles, J. Atmos. Solar-Terr. Phys., 62, 1377–1383, 2000.

  29. Seker, I. and J. D. Mathews, A 3D model of the MSTID bands based on the incoherent scatter radar and allsky imaging observations, 2008 (in progress).

  30. Seker, I., J. D. Mathews, J. Wiig, P. F. Gutierrez, J. S. Friedman, and C. A. Tepley, First results from the Penn state allsky Imager at Arecibo observatory, Earth Planets Space, 59, 165–176, 2007.

  31. Shiokawa, K., C. Ihara, Y. Otsuka, and T. Ogawa, Statistical study of nighttime medium-scale traveling ionospheric distrurbances using mid-latitude airglow images, J. Geophys. Res., 108(A1), 1052, doi:10. 1029/2002JA009491, 2003a.

  32. Shiokawa, K., Y. Otsuka, C. Ihara, T. Ogawa, and F. J. Rich, Ground and satellite observations of nighttime medium-scale traveling iono-spheric disturbance at midlatitude, J. Geophys. Res., 108(A4), 1145, doi:10.1029/2002JA009639, 2003b.

  33. Swartz, W. E., S. C. Collins, M. C. Kelley, J. J. Makela, E. Kudeki, S. Franke, J. Urbina, N. Aponte, S. Gonzalez, M. P. Sulzer, and J. S. Friedman, First observations of an F-region turbulent upwelling coincident with severe E-region plasma and neutral atmosphere perturbations, J. Atmos. Solar-Terr. Phys., 64, 1545–1556, 2002.

  34. Taylor, M. J., J.-M. Jahn, S. Fukao, and A. Saito, Possible evidence of gravity wave coupling into the mid-latitude F region ionosphere during the SEEK campaign, Geophys. Res. Lett., 25, 1801–1804, 1998.

  35. Vadas, S. L., Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys. Res., 112, A06305, doi:10.1029/2006JA011845, 2007.

  36. Zhou, Q.-N. and J. D. Mathews, On the physical explanation of the Perkins instability, J. Geophys. Res., 111, A12309, doi:10.1029/2006JA011696, 2006.

  37. Zhou, Q.-N., J. D. Mathews, Q. Du, and C. A. Miller, A preliminary investigation of the pseudo-spectral method numerical solution of the Perkins instability equations in the homogeneous case, J. Atmos. Solar-Terr. Phys., 67, 325–335, 2005.

  38. Zhou, Q.-N., J. D. Mathews, C. A. Miller, and I. Seker, The evolution of nighttime mid-latitude mesoscale F-region structures: A case study utilizing numerical solution of the Perkins instability equations, Planet. Space Sci., 54, 710–718, 2006.

  39. Zhou, Q.-N., J. D. Mathews, and Q. Du, Linear stage theoretical and numerical solutions of the Perkins instability equations in the inhomoge-neous TEC case, Planet. Space Sci., 2008 (in review).

Download references

Author information

Correspondence to Ilgin Seker.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • F-region
  • plasma depletion bands
  • GPS-TEC
  • ISR
  • all-sky imaging
  • MSTID