Skip to main content


You are viewing the new article page. Let us know what you think. Return to old version

Article | Open | Published:

Quantitative description of oscillatory zoning in basaltic to dacitic plagioclases from the Shirahama Group, Japan


New criteria related to the origin of oscillatory zoning (OZ) in plagioclase are presented. We compare the OZs in basaltic to those of dacitic plagioclases in the tholeiitic series volcanic rocks of the Shirahama Group, Izu Peninsula, Japan. Nomarski differential interference contrast (NDIC) images of the etched thin sections are used to measure zone thicknesses of the OZs. The normalized standard deviations per data series of the thicknesses are then calculated. We found that the average thicknesses are almost constant (mostly from 2 to 3 μm) through all the rock samples. This constancy corresponds to our idea that the length of oscillation, D/V (D: diffusivity in the melt; V: growth velocity of plagioclase) is almost constant for a variety of melt viscosity because strong dependences on the viscosity of D and V are canceled out in D/V. Consequently, we concluded that the growth of the OZ is basically controlled by an interface kinetics mechanism. In contrast, the plagioclases in SiO2-rich rocks have the following features: (1) larger standard deviations, (2) abundant erode-like zones, and (3) large oscillation amplitudes. These features reveal that the OZ patterns of plagioclases in more silicic magmas are disturbed due to change of the environmental parameters under the magma dynamics.


  1. Allègre, C. J., A. Provost, and C. Jaupart, Oscillatory zoning: a pathological case of crystal growth, Nature, 294, 223–228, 1981.

  2. Anderson, A. T., Jr., Oscillatory zoning of Plagioclase Nomarski interference contrast microscopy of etched polished sections, Am. Mineral., 68, 125–129, 1983.

  3. Anderson, A. T., Jr., Probable relations between plagioclase zoning and magma dynamics, Fuego, Volcano, Guatemala, Am. Mineral., 69, 660–676, 1984.

  4. Baker, Don R., Estimation of diffusion coefficients during interdiffusion of geologic melts: Application of transition state theory, Chem. Geol., 98, 11–21, 1992.

  5. Cashman, K. V., Textural constraints on the kinetics of crystallization of igneous rocks, Rev. Mineral., 24, 259–314, 1990.

  6. Ghiorso, M. S. and R. O. Sack, Chemical Mass Transfer in Magmatic Processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Contrib. Mineral. Petrol., 119, 197–212, 1995.

  7. Ginibre, C., A. Kronz, and G. Worner, High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning, Contrib. Mineral. Petrol., 142, 436–448, 2002.

  8. Grossberger, P. and I. Procaccia, Measuring the strangeness of strange attractors, PhysicaD, 9, 189–208, 1983.

  9. Haase, C. S., J. Chadam, D. Feinn, and P. Ortoleva, Oscillatory zoning in plagioclase Feldspar, Science, 209, 272–274, 1980.

  10. Hattori, K. and H. Sato, Magma evolution recorded in plagioclase zoning in 1991 Pinatubo eruption products, Am. Mineral., 81, 982–994, 1996.

  11. Higman, S. L. and T. H. Pearce, Spatiotemporal dynamics in oscillatory zoned magmatic plagioclase, Geophys. Res. Lett., 20, 1935–1938, 1993.

  12. Holten, T., B. Jamtveit, P. Meakin, M. Cortini, J. Blundy, and H. Austrheim, Statistical characteristics and origin of oscillatory zoning in crystals, Am. Mineral., 82, 596–606, 1997.

  13. Holten, T., B. Jamtveit, and P. Meakin, Noise and oscillatory zoning of minerals, Geochim. Cosmochim. Acta, 64, 1893–1904, 2

  14. Kano, K., Interactions between andesitic magma and poorly consolidated sediments: examples in the Neogene Shirahama Group, south Izu, Japan, J. Volcanol. Geotherm. Res., 37, 59–75, 1989.

  15. Lange, R. A., The effect of H2O, CO2 and F on the density and viscosity of silicate melts, in Mineralogical Society of America, Reviews in Mineralogy: Volatiles in Magmas, edited by M. Carroll and J. R. Holloway, 30, 331–369, 1994.

  16. Lasaga, A. C., Toward a master equation in crystal growth, Am. J. Sci., 282, 1264–1288, 1982.

  17. L’Heureux, I. and A. D. Fowler, Isothermal constitutive undercooling as a model for oscillatory zoning in plagioclase, Can. Mineral., 34, 1137–1147, 1996.

  18. Ochs III, F A. and R. A. Lange, The Density of Hydrous Magmatic Liquids, Science, 283, 1314–1317, 1999.

  19. Pearce, T. H. and A. M. Kolisnik, Observations of plagioclase zoning using interference imaging, Earth Sci. Rev., 29, 9–26, 1990.

  20. Pearce, T. H., M. P. Griffin, and A. M. Kolisnik, Magmatic crystal stratigraphy and constraints on magma chamber dynamics: laser interference results on individual phenocrysts, J. Geophys. Res., 92, 13745–13752, 1987.

  21. Perugini, D., G. Poli, and L. Valentini, Strange attractors in plagioclase oscillatory zoning: petrological implications, Contrib. Mineral. Petrol., 149, 482–497, 2005.

  22. Shaw, H. R., Viscosities of magmatic silicate liquids, an empirical method of prediction, Am. J. Sci., 272, 870–893, 1972.

  23. Shore, M. and A. D. Fowler, Oscillatory zoning in minerals: A common phenomenon, Can. Mineral., 34, 1111–1126, 1996.

  24. Sibley, D. F, T. A. Vogel, B. M. Walker, and G. Byerly, The origin of oscillatory zoning in plagioclase: A diffusion and growth controlled model, Am. J. Sci., 276, 275–284, 1976.

  25. Singer, B. S., T. H. Pearce, A. M. Kolisnik, and J. D. Myers, Plagioclase zoning in mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc, Alaska, Amer. Mineral., 78, 143–157, 1993.

  26. Singer, B. S., M. A. Dungan, and G. D. Layne, Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: clues to dynamics of calc-alkaline magma chambers, Am. Mineral., 80, 776–798, 1995.

  27. Stamatelopoulou-Seymour, K., D. Vlassopoulos, T. H. Pearce, and C. Rice, The record of magma chamber processes in plagioclase phenocrysts at Thera Volcano, Aegean volcanic arc, Greece, Contrib. Mineral. Petrol., 104, 73–84, 1990.

  28. Stewart, M. L. and A. D. Fowler, The nature and occurrence of discrete zoning in plagioclase from recently erupted andesitic volcanic rocks, Montserrat, J. Volcanol. Geotherm. Res., 106, 243–253, 2001.

  29. Tamura, Y., Genesis of Island Arc Magmas by Mantle-Derived Bimodal Magmatism: Evidence from the Shirahama Group, Japan, J. Petrol., 35, 619–645, 1994.

  30. Tamura, Y, Liquid lines of descent of island arc magmas and Genesis of Rhyolites: Evidence from the Shirahama Group, Japan, J. Petrol., 36, 417–434, 1995.

  31. Tamura, Y and E. Nakamura, The Arc Lavas of the Shirahama Group, Japan: Sr and Nd Isotopic Data Indicate Mantle-Derived Bimodal Magmatism, J. Petrol., 37, 1307–1319, 1996.

  32. Tsune, A. and A. Toramaru, Magmatic differentiation process inferred from plagioclase zoning and its pattern, Bull. Volcanol. Soc. Jpn., 49, 249–266, 2004 (in Japanese with English abstract).

  33. Tsune, A. and A. Toramaru, A simple model of oscillatory zoning in magmatic plagioclase: Development of an isothermal undercooling model, Am. Mineral., 92, 1071–1079, 2007.

  34. Wallace, G. S. and G. W Bergantz, Wavelet-based correlation (WBC) of crystal populations and magma mixing, Earth Planet. Sci. Lett., 202, 133–145, 2002.

  35. Wallace, G. S. and G. W. Bergantz, Reconciling heterogeneity in crystal zoning data: An application of shared characteristic diagrams at Chaos Crags, Lassen Volcanic Center, California, Contrib. Mineral. Petrol., 149, 98–112, 2005.

  36. Wang, Y and E. Merino, Oscillatory magma crystallization by feedback between the concentrations of the reactant species and mineral growth rates, J. Petrol., 34, 369–382, 1993.

  37. Wiebe, R. A., Plagioclase stratigraphy: a record of magmatic conditions and events in a granitic stock, Am. J. Sci., 266, 690–703, 1968.

Download references

Author information

Correspondence to Akira Tsune.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Plagioclase
  • oscillatory zoning
  • zoning pattern
  • zone thickness