Skip to main content

Time-evolution of bubble formation in a viscous liquid

Abstract

Time-evolutions of bubble vesiculation in viscous liquid are characterized by two stages, i.e., the bubble formation stage and the bubble coalescence stage. We have focused on the former stage of bubble vesiculation and investigated numerically bubble formation in decompressed viscous liquid. Bubble formation consists of nucleation and growth of bubbles due to the exsolution of volatile elements from liquid. In order to describe the bubble formation processes, we have developed a theoretical model, taking into account the bubble size distribution and the viscosity of liquid, on the base of the model proposed by Toramaru (J. Geophys. Res., 100, 1913–1931, 1995). Numerical solutions show that the feature of bubble nucleation is significantly varied according to the magnitude of the liquid viscosity. In low viscosity cases, the growth of bubbles is mainly controlled by the diffusive flux of volatile molecules to bubbles. The number density of bubbles is sensitive to the diffusivity of volatile element in liquid. On the other hand, bubbles hardly grow in the case of the extremely high viscosity. Therefore, bubbles continue to be formed in order to reduce the volatile oversaturation of liquid. In the case of the intermediate viscosity, bubbles grow to the large size slowly by the viscous resistance. After the nucleation of bubbles ceases, the Ostwald ripening occurs and leads to the dissolution of small bubbles. The number density of bubbles varies greatly with time. The time-evolutions of the bubble size distribution have been also caluclated. In the case of the low and extreme high viscosity, the bubble size distribution evolves as an unimodal size distribution. In the case of the moderate viscosity, the size distribution of bubbles shows the distribution with a wider dispersion. These characteristic time-evolutions of the number density and size distribution of bubbles would be useful in evaluating material quantities such as the diffusivity, the viscosity, and the surface tension of liquid from experimental results. Furthermore our results provide the number density and size distribution of bubbles just before bubble coalescence occurs.

References

  • Adams, G. W., J. L. Schmitt, and R. A. Zalabsky, The homogeneous nucleation of nonane, J. Chem. Phys., 81, 5074–5078, 1984.

    Article  Google Scholar 

  • Anderson, R. J., R. C. Miller, J. L. Kassner Jr., and D. E. Hagen, A study of homogeneous condensation-freezing nucleation of small water droplets in an expansion cloud chamber, J. Atmos. Sci., 37, 2508–2520, 1980.

    Article  Google Scholar 

  • Avrami, M., Kinetics of Phase Change I: General Theory, J. Chem. Phys., 7, 1103–1112, 1939.

    Article  Google Scholar 

  • Avrami, M., Kinetics of Phase Change II: Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys., 8, 212–224, 1940.

    Article  Google Scholar 

  • Avrami, M., Granulation, Phase Change, and Microstructure: Kinetics of Phase Change III, J. Chem. Phys., 9, 177–184, 1941.

    Article  Google Scholar 

  • Bagdassarov, N., A. Dorfman, and D. B. Dingwell, Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt, Am. Mineral., 85, 33–40, 2000.

    Article  Google Scholar 

  • Batchelor, G. K., An introduction to fluid dynamics, Cambridge University Press, 1967.

    Google Scholar 

  • Blower, J. D., Factors controlling permeability-porosity relationships in magma, Bull. Volcanol., 63, 497–504, 2001.

    Article  Google Scholar 

  • Burnham, C. W., Water and magmas: A mixing model, Geochim. Cos-mochim. Acta., 39, 1077–1084, 1975.

    Article  Google Scholar 

  • Dillmann, A. and G. E. A. Meier, A refined droplet approach to the problem of homogeneous nucleation from the vapor phase, J. Chem. Phys., 94, 3872–3884, 1991.

    Article  Google Scholar 

  • Epel’baum, M. B., I. V. Babashov, and T. P. Salova, Surface tension of felsic magmatic melts at high temperatures and pressure, Geochem. Int., 10, 343–345, 1973.

    Google Scholar 

  • Feder, J., K. C. Russell, J. Lothe, and G. M. Pound, Homogeneous nucleation and growth of droplets in vapours, Adv. Phys., 15, 111–178, 1966.

    Article  Google Scholar 

  • Fogel, R. A. and M. J. Rutherford, The solubility of carbon dioxide in rhyolitic melt: A quantitative FTIR study, Am. Mineral., 75, 1311–1326, 1990.

    Google Scholar 

  • Gaonac’h, H., S. Lovejoy, J. Stix, and D. Schertzer, A scaling growth model for bubbles in basaltic lava flows, Earth Planet. Sci. Lett., 139, 395–409, 1996.

    Article  Google Scholar 

  • Gardner, J. E., Heterogeneous bubble nucleation in highly viscous silicate melts during instantaneous decompression from high pressure, Chem. Geol., 236, 1–12, 2007.

    Article  Google Scholar 

  • Gardner, J. E., M. Hilton, and M. R. Carroll, Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure, Earth Planet. Sci. Lett., 168, 201–218, 1999.

    Article  Google Scholar 

  • Gardner, J. E., M. Hilton, and M. R. Carroll, Bubble growth in highly viscous silicate melts during continuous decompression from high pressure, Geochim. Cosmochim. Acta, 64, 1473–1483, 2000.

    Article  Google Scholar 

  • Ghiorso, M. S., I. S. E. Carmichael, M. L. Rivers, and R. O. Sack, The Gibbs free energy of mixing of natural silicate liquid; an expanded regular solution approximation for the calculation of magmatic intensive variables, Contrib. Mineral. Petrol., 84, 107–145, 1983.

    Article  Google Scholar 

  • Hess, K.-U. and D. B. Dingwell, Viscosities of hydrous leucogranitic melts: a non-Arrhenian model, Am. Mineral., 81, 1297–1300, 1996.

    Google Scholar 

  • Hurwitz, S. and O. Navon, Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature, and water content, Earth Planet. Sci. Lett., 122, 267–280, 1994.

    Article  Google Scholar 

  • Johnson, W. A. and R. F. Mehl, Reaction kinetics in processes of nucleation and growth, Am. Inst. Min. Metal. Petro. Eng., 135, 416–458, 1939.

    Google Scholar 

  • Khitarov, N. I., Ye. B. Lebedev, A. M. Dorfman, and N. Sh. Bagdassarov, Effects of temperature, pressure, and volatiles on the surface tension of molten basalt, Geochem. Int., 16, 78–86, 1979.

    Google Scholar 

  • Kikuchi, R., Treatment of droplike clusters in nucleation theory using Reiss’s method, J. Stat. Phys., 3, 331–345, 1971.

    Article  Google Scholar 

  • Klug, C. and K. V. Cashman, Vesiculation of May 18, 1980 Mount St. Helens magma, Geology, 22, 468–472, 1994.

    Article  Google Scholar 

  • Landau, L. D. and E. M. Lifshitz, Fluid Mechanics, 2nd edition, Butterworth-Heinemann, Boston, 1987.

    Google Scholar 

  • Larsen, J. F. and J. E. Gardner, Experimental constraints on bubble interactions in rhyolite melt: implications for vesicle size distributions, Earth Planet. Sci. Lett., 180, 201–214, 2000.

    Article  Google Scholar 

  • Larsen, J. F., M.-H. Denis, and J. E. Gardner, Experimental study of bubble coalescence in rhyolitic and phonolitic melts, Geochim. Cosmochim. Acta, 68(2), 333–344, 2004.

    Article  Google Scholar 

  • Lensky, N. G., V. Lyakhovsky, and O. Navon, Radial variations of melt viscosity around growing bubbles and gas overpressure in vesiculating magmas, Earth Planet. Sci. Lett., 186, 1–6, 2001.

    Article  Google Scholar 

  • Lensky, N. G., O. Navon, and V. Lyakhovsky, Bubble growth during decompression of magma: experimental and theoretical investigation, J. Volcanol. Geotherm. Res., 129(1–3), 7–22, 2004.

    Article  Google Scholar 

  • Lifshitz, E. M. and L. P. Pitaevskii, Physical Kinetics, Pergamon, New York, 1981.

    Google Scholar 

  • Lothe, J. and G. M. Pound, Reconsiderations of nucleation theory, J. Chem. Phys., 36, 2080–2085, 1962.

    Article  Google Scholar 

  • Lyakhovsky, V., S. Hurwitz, and O. Navon, Bubble growth in rhyolitic melts: Experimental and numerical investigation, Bull. Volcanol., 58, 19–32, 1996.

    Article  Google Scholar 

  • Mangan, M. T. and T. Sisson, Delayed, disequilibrium degassing in rhyo-lite magma: decompression experiments and implications for explosive volcanism, Earth Planet. Sci. Lett., 183, 441–455, 2000.

    Article  Google Scholar 

  • Mangan, M. T., L. Mastin, and T. Sisson, Gas evolution in eruptive conduits: combining insights from high temperature and pressure decompression experiments with steady-state flow modeling, J. Volcanol. Geotherm. Res., 129, 23–36, 2004a.

    Article  Google Scholar 

  • Mangan, M. T., T. W. Sisson, and W. B. Hankins, Decompression experiments identify kinetic controls on explosive silicic eruptions, Geophys. Res. Lett., 31, L08605, 2004b.

    Article  Google Scholar 

  • Mourtada-Bonnefoi, C. C. and D. Laporte, Experimental study of homogeneous bubble nucleation in rhyolitic magmas, Geophys. Res. Lett., 26, 3505–3508, 1999.

    Article  Google Scholar 

  • Mourtada-Bonnefoi, C. C. and D. Laporte, Homogeneous bubble nucle-ation in rhyolitic magmas: an experimental study of the effect of H2O and CO2, J. Geophys. Res., 107(B4), ECV 2-1-2-21, 2002.

  • Mourtada-Bonnefoi, C. C. and D. Laporte, Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate, Earth Planet. Sci. Lett., 218, 521–537, 2004.

    Article  Google Scholar 

  • Noguchi, S., A. Toramaru, and T. Shimano, Crystallization of microlites and degassing during magma ascent: Constraints on the fluid mechanical behavior of magma during the Tenjo Eruption on Kozu Island, Japan, Bull. Volcanol., 68(5), 432–449, 2006.

    Article  Google Scholar 

  • Nowak, M. and H. Behrens, An experimental investigation on diffusion of water in haplogranitic melts, Contrib. Mineral. Petrol., 126, 4, 365–376, 1997.

    Article  Google Scholar 

  • Papale, P., Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids, Am. Mineral., 84, 477–492, 1999.

    Google Scholar 

  • Papale, P., Volcanic conduit dynamics, FROM MAGMA TO TEPHRA, Modelling Physical Processes of Explosive Volcanic Eruptions, Elsevier, chapter 3, 2001.

    Google Scholar 

  • Pradell, T., D. Crespo, N. Clavaguera, and M. T. Clavaguera-Mora, Diffusion controlled grain growth in primary crystallization: Avrami expo-nents revised, J. Phys., Condens. Matter, 10, 3833–3844, 1998.

    Article  Google Scholar 

  • Proussevitch, A. A. and D. L. Sahagian, Dynamics and energetics of bubble growth in magmas: analytical formulation and numerical modeling, J. Geophys. Res., 103(B8), 18,223–18,251, 1998.

    Article  Google Scholar 

  • Proussevitch, A. A., D. L. Sahagian, and A. T. Anderson, Dynamics of diffusive bubble growth in magmas: isothermal case, J. Geophys. Res., 98(B12), 22,283–22,307, 1993.

    Article  Google Scholar 

  • Proussevitch, A. A., D. L. Sahagian, and E. P. Tsentalovich, Statistical analysis of bubble and crystal size distributions: Formulations and procedures, J. Volcanol. Geotherm. Res., 164(3), 95–111, 2007a.

    Article  Google Scholar 

  • Proussevitch, A. A., D. L. Sahagian, and W. D. Carlson, Statistical analysis of bubble and crystal size distributions: Application to Colorado Plateau basalts, J. Volcanol. Geotherm. Res., 164(3), 112–126, 2007b.

    Article  Google Scholar 

  • Shimano, T. and S. Nakada, Vesiculation path of ascending magma in the 1983 and the 2000 eruptions of Miyakejima volcano, Japan, Bull. Volcanol., 68(6), 549–566, 2006.

    Article  Google Scholar 

  • Sparks, R. S. J., The dynamics of bubble formation and growth in magmas: a review and analysis, J. Volcanol. Geotherm. Res., 3, 1–37, 1978.

    Article  Google Scholar 

  • Takeuchi, S., S. Nakashima, A. Tomiya, and H. Shinohara, Experimental constraints on the low gas permeability of vesicular magma during decompression, Geophys. Res. Lett., 32, L10312, 2005.

    Article  Google Scholar 

  • Tanaka, K. K., H. Tanaka, and K. Nakazawa, Non-equilibrium condensation in a primordial solar nebula: formation of refractory metal nuggets, Icarus, 160, 197–207, 2002.

    Article  Google Scholar 

  • Toramaru, A., Vesiculation process and bubble size distributions in ascending magmas with constant velocities, J. Geophys. Res., 94(B12), 17,523–17,542, 1989.

    Article  Google Scholar 

  • Toramaru, A., Numerical study of nucleation and growth of bubbles in viscous magmas, J. Geophys. Res., 100, 1913–1931, 1995.

    Article  Google Scholar 

  • Toramaru, A., BND (bubble number density) decompression rate meter for explosive volcanic eruptions, J. Volcanol. Geotherm. Res., 154, 303–316, 2006.

    Article  Google Scholar 

  • Yamada, K., Size distribution of bubbles nucleated in viscous liquid, Tokyo institute of Technology, Ph.D. thesis, 2005.

    Google Scholar 

  • Yamada, K., H. Tanaka, K. Nakazawa, and H. Emori, A new theory bubble formation in magma, J. Geophys. Res., 110, B02203, 2005.

    Google Scholar 

  • Yamada, K., H. Emori, and K. Nakazawa, Bubble expansion rates in viscous compressible liquid, Earth Planets Space, 58, 865–872, 2006.

    Article  Google Scholar 

  • Yamamoto, T. and H. Hasegawa, Grain formation through nucleation process in astrophysical environment, Prog. Theo. Phys., 58(3), 816–828, 1977.

    Article  Google Scholar 

  • Yamamoto, T., T. Chigai, S. Watanabe, and T. Kozasa, Kinetic theory of steady chemical nucleation in the gas phase, Astron. Astrophys., 380, 373–383, 2001.

    Article  Google Scholar 

  • Zhang, Y., H2O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion, Rev. Geophys., 37, 493–516, 1999.

    Article  Google Scholar 

  • Zhang, Y. and H. Behrens, H2O diffusion in rhyolitic melts and glasses, Chem. Geol., 169, 243–262, 2000.

    Article  Google Scholar 

  • Zhang, Y., X. Zhengjiu, Z. Mengfan, and W. Haoyue, Silicate melt properties and volcanic eruptions, Rev. Geophys., 45(4), DOI:10.1029/ 2006RG000216, 2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kou Yamada.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Yamada, K., Emori, H. & Nakazawa, K. Time-evolution of bubble formation in a viscous liquid. Earth Planet Sp 60, 661–679 (2008). https://doi.org/10.1186/BF03353130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353130

Key words