Skip to main content

Electrodynamics of the vertical coupling processes in the atmosphere-ionosphere system of the low latitude region

Abstract

Dynamical, electro-dynamical and electrical coupling processes originating from upward propagation of atmospheric waves, and magnetosphere-ionosphere interaction are responsible for the large degree of variabilities observed in the low latitude ionosphere. One of the most outstanding aspects of its phenomenology is related to the sunset electrodynamical processes responsible for the evening enhancements in zonal and vertical electric fields and the associated spread of F/plasma bubble irregularity development. Recent observational results have provided evidence of significant contribution to their quiet time variability arising from thermospheric wind patterns, upward propagating planetary waves and possibly sporadic E layers. This paper provides an overview and some new results on planetary wave coupling with the equatorial F region, the E layer conductivity as key connecting mechanism, a possibly interactive role by sporadic E layers, and the resulting day-to-day variability in the evening prereversal electric field enhancements with consequences on spread F development.

References

  1. Abdu, M. A., Major phenomena of the equatorial ionosphere thermosphere system under disturbed conditions (Invited review), J. Atmos. Terr. Phys., 59(13), 1505–1519, 1997.

    Article  Google Scholar 

  2. Abdu, M. A., Outstanding problems in the equatrial ionosphere-thermosphere system relevant to spread F, J. Atmos. Sol.-Terr. Phys., 63, 869, 2001.

    Article  Google Scholar 

  3. Abdu, M. A., R. T. Medeiros, J. A. Bittencourt, and I. S. Batista, Vertical ionization drift velocities and range type spread F in the evening equatorial ionosphere, J. Geophys. Res., 88, 399–402, 1983.

    Article  Google Scholar 

  4. Abdu, M. A., I. S. Batista, H. Takahashi, J. MacDougall, J. H. Sobral, A. F. Medeiros, and N. B. Trivedi, Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector, J. Geophys. Res., 108(A12), 1449, doi:10.1029/ 2002JA009721, 2003.

    Article  Google Scholar 

  5. Abdu, M. A., I. S. Batista, B. W. Reinisch, and A. J. Carrasco, Equatorial F-layer heights, evening prereversal electric field, and night E layer density in the American sector: IRI validation with observations, Adv. Space Res., 34, 1953–1965, 2004.

    Article  Google Scholar 

  6. Abdu, M. A., P. P. Batista, I. S. Batista, C. G. M. Brum, A. J. Carrasco, and B. W. Reinisch, Planetary wave oscillations in mesospheric winds, equatorial evening prereversal electric field and spread F, J. Geophys. Res., 33, L07107, doi:10.1029/1005GL024837, 2006a.

    Google Scholar 

  7. Abdu, M. A., T. K. Ramkumar, I. S. Batista, C. G. M. Brum, H. Takahashi, B. W. Reinisch, and J. H. A. Sobral, Planetary wave signatures in the equatorial atmosphere-ionosphere system, and Mesosphere- E- and F-region coupling, J. Atmos. Sol.-Terr. Phys., 68, 509–522, 2006b.

    Article  Google Scholar 

  8. Abdu, M. A., K. N. Iyer, R. T. de Medeiros, I. S. Batista, and J. H. A. Sobral, Thermospheric Meridional Wind Control of Equatorial Spread F and Evening Prereversal Electric Field, Geophys. Res. Lett., 2006c (in press).

    Google Scholar 

  9. Abdu, M. A., I. S. Batista, B. W. Reinisch, J. R. de Souza, J. H. A. Sobral, F. Bertoni, T. R. Pedersen, A. F. Medeiros, N. J. Schuch, and E. R. de Paula, Conjugate Point Equatorial Experiment (COPEX) Campaign in Brazil: Electrodynamics highlights related to spread F development conditions and its day-to-day variability, J. Atmos. Sol.-Terr. Phys., 2007 (submitted).

    Google Scholar 

  10. Batista, I. S., M. A. Abdu, and J. A. Bittencourt, Equatorial F-region vertical plasma drifts: seasonal and longitudinal asymetries in the American sector, J. Geophys. Res., 91, 12055–12064, 1986.

    Article  Google Scholar 

  11. Batista, I. S., M. A. Abdu, A. J. Carrasco, B. W. Reinisch, E. R. de Paula, N. J. Schuch et al., Equatorial spread F and sporadic E-layer connections during the Brazilian Conjugate Point Equatorial Experiment—COPEX, J. Atmos. Sol.-Terr. Phys., 2007 (submitted).

    Google Scholar 

  12. Bittencourt, J. A. and M. A. Abdu, A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F-region, J. Geophys. Res., 86, 2451–2455, 1981.

    Article  Google Scholar 

  13. Bowman, G. G. and I. K. Mortimer, Spread-F/sporadic E coupling at Chung-Li, especially for postsunset periods of sunspot maximum years, J. Geophys. Res., 108(A4), 1148, doi:10.1029/2002JA009541, 2003.

    Article  Google Scholar 

  14. Carrasco, A. J., I. S. Batisat, and M. A. Abdu, The prereversal enhancement in the vertical drift for Fortaleza and sporadic E layer, J. Atmos. Sol.-Terr. Phys., 67, 1610–1617, 2005.

    Article  Google Scholar 

  15. Carrasco, A. J., I. S. Batista, and M. A. Abdu, Simulation of the sporadic E layer response to prereversal associated evening vertical electric field enhancement near dip equator, J. Geophys. Res., 112, A06324, doi:10.10292006JA01243, 2007.

    Google Scholar 

  16. Chen, P. R., Two-day oscillations of the equatorial ionization anomaly, J. Geophys. Res., 979(A5), 6343–6357, 1992.

    Article  Google Scholar 

  17. Eccles, J. V., A simple model of low-latitude electric fields, J. Geophys. Res., 103, 26,699–26,708, 1998.

    Article  Google Scholar 

  18. Farley, D. T., B. B. Balsley, and R. F. Woodman, Equatorial spread F—Implications VHF radar observations, J. Geophys. Res., 75(34), 7199, 1970.

    Article  Google Scholar 

  19. Farley, D. T., E. Bonelli, B. G. Fejer, and M. F. Larsen, The prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 91, 13,723–13,728, 1986.

    Article  Google Scholar 

  20. Fejer, B. G., L. Scherliess, and E. R. de Paula, Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19,859–19,870, 1999.

    Article  Google Scholar 

  21. Fesen, C. G., G. Crowley, R. G. Roble et al., Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts, Geophys. Res. Lett., 27(13), 1851–1854, 2000.

    Article  Google Scholar 

  22. Forbes, J. M., Planetary waves in the thermosphere-ionosphere system, J. Geomag. Geoelectr., 48, 91, 1996.

    Article  Google Scholar 

  23. Forbes, J. M., Wave coupling between the lower and upper atmosphere: case study of an ultra-fast Kelvin Wave, J. Atmos. Sol.-Terr. Phys., 62, 1603–1621, 2000.

    Article  Google Scholar 

  24. Forbes, J. M. and S. Leveroni, Quasi16-day oscillations in the ionosphere, Geophys. Res. Lett., 19, 981–984, 1992.

    Article  Google Scholar 

  25. Fukao, S., Coupling Processes in the Equatorial Atmosphere (CPEA): a project overview, J. Meteor. Soc. Jpn., 84A, 1–18, 2006.

    Article  Google Scholar 

  26. Fukao, S., T. Yokoyama, T. Tayama et al., Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesia, Ann. Geophys., 24(5), 1411–1418, 2006.

    Article  Google Scholar 

  27. Fritts, D. C., M. A. Abdu, B. R. Batista, I. S. Batista, P. P. Batista, R. Buriti, B. R. Clemesha, T. Dautermann, E. de Paula, B. J. Fechine, B. Fejer, D. Gobbi, J. Haase, F. Kamalabadi, B. Laughman, L. M. Lima, H.-L. Liu, A. Medeiros, P.-D. Pautet, D. M. Riggin, F. São Sabbas, J. H. A. Sobral, P. Stamus, H. Takahashi, M. J. Taylor, S. L. Vadas, and C. M. Wrasse, The Spread F Experiment (SpreadFEx): Program overview and first results, Earth Planets Space, 61, this issue, 411–430, 2009.

    Article  Google Scholar 

  28. Gurubaran, S., S. Sridharan, T. K. Ramkumar, and R. Rajaram, The meso-spheric quasi 2-day wave over Tirunelveli, J. Atmos. Terr. Phys., 63, 975–985, 2001.

    Article  Google Scholar 

  29. Hagan, M. E., J. M. Forbes, and F. Vial, Numerical investigation of the propagation of the quasi-two-daywave into the lower thermosphere, J. Geophys. Res., 98(D12), 23,193–23,205, 1993.

    Article  Google Scholar 

  30. Haerendel, G., Theory of equatorial spread F, report, Maxplanck-Institut fur Extraterre. Phys., Garching, Germany, 1973.

    Google Scholar 

  31. Haerendel, G. and J. V. Eccles, The role of the equatorial electrojet in the evening ionosphere, J. Geophys. Res., 97, 1224–1243, 1992.

    Google Scholar 

  32. Haerendel, G., J. V. Eccles, and S. Kir, Theory of modeling the equatorial evening ionosphere and the origin of the shear in the Horizontal plasma flow, J. Geophys. Res., 97, 1209–1223, 1992.

    Article  Google Scholar 

  33. Haldoupis, C., D. Pancheva, and Mitchell, A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers, J. Geophys. Res., 109, A02302, doi:10.1029/2003JA010253, 2004.

    Google Scholar 

  34. Heelis, R. A., P. C. Kendall, R. J. Moffet, D. W. Windle, and H. Rishbeth, Electrical coupling of the E- and F-region and its effects on the F-region drifts and winds, Planet. Space Sci., 22, 743–756, 1974.

    Article  Google Scholar 

  35. Hocking, W. K., B. Fuller, and B. Vandepeer, Real-time determination of meteor related parameters utilizing modern digital technology, J. Atmos. Sol.-Terr. Phys., 63(2–3), 155–169, 2001.

    Article  Google Scholar 

  36. Hysell, D. L. and E. Kudeki, Collisional shear instability in the equatorial F region ionosphere, J. Geophys. Res., 109, A11301, doi:10.1029/ 2004JA010636, 2004.

    Article  Google Scholar 

  37. Kudeki, E. and S. Bhattacharyya, Postsunset vortex in equatorial F region plasma drifts and implications for ottomside spread F, J. Geophys. Res., 104(A12), 28,163–28,170, 1999.

    Article  Google Scholar 

  38. Maruyama, T., A diagnostic model for equatorial spread F, 1, Model description and application to electric fields and neutral wind effects, J. Geophys. Res., 93, 14,611–14,622, 1988.

    Article  Google Scholar 

  39. Mendillo, M., J. Meriwether, and M. Biondi, Testing the thermospheric neutral wind suppression mechanism for the day-to-day variability of equatorial spread F, J. Geophys. Res., 106, 3655–3663, 2001.

    Article  Google Scholar 

  40. Miyoshi, Y. and T. Hirooka, A numerical experiment of excitation of the 5-day wave by a GCM, J. Atmos. Sci., 56, 1698–1707, 1999.

    Article  Google Scholar 

  41. Ogawa, T., Y. Otsuka, K. Shiokawa, A. Saito, and M. Nishioka, Ionospheric disturbances over Indonesia and their possible association with atmospheric gravity waves from the troposphere, J. Meteor. Soc. Jpn., 84A, 327–342, 2006.

    Article  Google Scholar 

  42. Pancheva, D., N. Mitchell, R. Clark, J. Drobjeva, and J. Lastovicka, Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998–March 2000); influence from below and above, Ann. Geophys., 20(11), 1807–1819, 2002.

    Article  Google Scholar 

  43. Pancheva, D., C. Houldoupis, C. E. Meek, A. H. Manson, and N. J. Mitchell, Evidence of a role for modulated atmospheric tides in the dependence of sporadic E layers on planetary waves, J. Geophys. Res., 108(A5), 1176, doi:101029/2002JA009788, 2003.

    Article  Google Scholar 

  44. Rishbeth, H.,, Planet. Space Sci., 19, 357–369, 1971.

    Article  Google Scholar 

  45. Sastri, J. H., M. A. Abdu, I. S. Batista, and J. H. A. Sobral, Onset Conditions of Equatorial (Range) Spread-F at Fortaleza, Brazil, During the June Solstice, J. Geophys. Res., 102(A11), 24,013–24,021, 1997.

    Article  Google Scholar 

  46. Stephan, A. W., M. Colerico, M. Mendillo, B. W. Reinisch, and D. Anderson, Suppression of equatorial spread F by sporadic E, J. Geophys. Res., 107(A2), 10,1029–10,1034, 2002.

    Google Scholar 

  47. Takahashi, H., L. M. Lima, C. M. Wrasse, M. A. Abdu, I. S. Batista, D. Gobbi, R. A. Buriti, and T. Tsuda, Evidence on 2–4 day modulation of the equatorial ionosphere h’F and mesospheric airglow emission, Geophys. Res. Lett., 32, L12102, doi: 10.1029/2004GL022318, 2005 (submitted).

    Article  Google Scholar 

  48. Takahashi, H., C. M. Wrasse, J. Fechine, D. Pancheva, M. A. Abdu, I. S. Batista, L. M. Lima, P. P. Batista, B. R. Clemesha, N. J. Schuch, K. Shiokawa, D. Gobbi, M. G. Mlynczak, and J. M. Russell, Signatures of Ultra Fast Kelvin waves in the equatorial middle atmosphere and ionosphere, Geophys. Res. Lett., 34, L11108, doi: 10.1029/2007GL029612, 2007.

    Article  Google Scholar 

  49. Tsunoda, R. T., Seeding of equatorial plasma bubbles with electric fields from and Es-layer instability, J. Geophys. Res., 112, A06304, doi: 10.1029/2006JA012103, 2007.

    Google Scholar 

  50. Tsunoda, R. T., R. C. Livingston, and C. L. Rino, Evidence of a velocity shear in bulk plasma motion associated with post-sunset rise of the equatorial F layer, Geophys. Res. Lett., 8(7), 807–810, 1981.

    Article  Google Scholar 

  51. Vincent, R. A., Long-period motions in the equatorial mesosphere, J. Atmos. Terr. Phys., 55, 1067–1080, 1993.

    Article  Google Scholar 

  52. Vineeth, C., T. K. Pant, C. V. Devasia et al., Atmosphere-ionosphere coupling observed over the dip equatorial MLTI region through the quasi 16-day wave, Geophys. Res. Lett., 34(12), L12102, 2007.

    Article  Google Scholar 

  53. Yokoyama, T., Fukao S., and Yamamoto M., Relationship of the onset of equatorial F region irregularities with the sunset terminator observed with the Equatorial Atmosphere Radar, Geophys. Res. Lett., 31(24), L24804, 2004.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Abdu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abdu, M.A., Brum, C.G.M. Electrodynamics of the vertical coupling processes in the atmosphere-ionosphere system of the low latitude region. Earth Planet Sp 61, 385–395 (2009). https://doi.org/10.1186/BF03353156

Download citation

Key words

  • Vertical coupling
  • atmosphere-ionosphere
  • spread F
  • planetary waves
  • sporadic E layers
  • prereversal electric field