Skip to main content


Electrodynamics of the vertical coupling processes in the atmosphere-ionosphere system of the low latitude region

Article metrics

  • 395 Accesses

  • 15 Citations


Dynamical, electro-dynamical and electrical coupling processes originating from upward propagation of atmospheric waves, and magnetosphere-ionosphere interaction are responsible for the large degree of variabilities observed in the low latitude ionosphere. One of the most outstanding aspects of its phenomenology is related to the sunset electrodynamical processes responsible for the evening enhancements in zonal and vertical electric fields and the associated spread of F/plasma bubble irregularity development. Recent observational results have provided evidence of significant contribution to their quiet time variability arising from thermospheric wind patterns, upward propagating planetary waves and possibly sporadic E layers. This paper provides an overview and some new results on planetary wave coupling with the equatorial F region, the E layer conductivity as key connecting mechanism, a possibly interactive role by sporadic E layers, and the resulting day-to-day variability in the evening prereversal electric field enhancements with consequences on spread F development.


  1. Abdu, M. A., Major phenomena of the equatorial ionosphere thermosphere system under disturbed conditions (Invited review), J. Atmos. Terr. Phys., 59(13), 1505–1519, 1997.

  2. Abdu, M. A., Outstanding problems in the equatrial ionosphere-thermosphere system relevant to spread F, J. Atmos. Sol.-Terr. Phys., 63, 869, 2001.

  3. Abdu, M. A., R. T. Medeiros, J. A. Bittencourt, and I. S. Batista, Vertical ionization drift velocities and range type spread F in the evening equatorial ionosphere, J. Geophys. Res., 88, 399–402, 1983.

  4. Abdu, M. A., I. S. Batista, H. Takahashi, J. MacDougall, J. H. Sobral, A. F. Medeiros, and N. B. Trivedi, Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: A case study in Brazilian sector, J. Geophys. Res., 108(A12), 1449, doi:10.1029/ 2002JA009721, 2003.

  5. Abdu, M. A., I. S. Batista, B. W. Reinisch, and A. J. Carrasco, Equatorial F-layer heights, evening prereversal electric field, and night E layer density in the American sector: IRI validation with observations, Adv. Space Res., 34, 1953–1965, 2004.

  6. Abdu, M. A., P. P. Batista, I. S. Batista, C. G. M. Brum, A. J. Carrasco, and B. W. Reinisch, Planetary wave oscillations in mesospheric winds, equatorial evening prereversal electric field and spread F, J. Geophys. Res., 33, L07107, doi:10.1029/1005GL024837, 2006a.

  7. Abdu, M. A., T. K. Ramkumar, I. S. Batista, C. G. M. Brum, H. Takahashi, B. W. Reinisch, and J. H. A. Sobral, Planetary wave signatures in the equatorial atmosphere-ionosphere system, and Mesosphere- E- and F-region coupling, J. Atmos. Sol.-Terr. Phys., 68, 509–522, 2006b.

  8. Abdu, M. A., K. N. Iyer, R. T. de Medeiros, I. S. Batista, and J. H. A. Sobral, Thermospheric Meridional Wind Control of Equatorial Spread F and Evening Prereversal Electric Field, Geophys. Res. Lett., 2006c (in press).

  9. Abdu, M. A., I. S. Batista, B. W. Reinisch, J. R. de Souza, J. H. A. Sobral, F. Bertoni, T. R. Pedersen, A. F. Medeiros, N. J. Schuch, and E. R. de Paula, Conjugate Point Equatorial Experiment (COPEX) Campaign in Brazil: Electrodynamics highlights related to spread F development conditions and its day-to-day variability, J. Atmos. Sol.-Terr. Phys., 2007 (submitted).

  10. Batista, I. S., M. A. Abdu, and J. A. Bittencourt, Equatorial F-region vertical plasma drifts: seasonal and longitudinal asymetries in the American sector, J. Geophys. Res., 91, 12055–12064, 1986.

  11. Batista, I. S., M. A. Abdu, A. J. Carrasco, B. W. Reinisch, E. R. de Paula, N. J. Schuch et al., Equatorial spread F and sporadic E-layer connections during the Brazilian Conjugate Point Equatorial Experiment—COPEX, J. Atmos. Sol.-Terr. Phys., 2007 (submitted).

  12. Bittencourt, J. A. and M. A. Abdu, A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F-region, J. Geophys. Res., 86, 2451–2455, 1981.

  13. Bowman, G. G. and I. K. Mortimer, Spread-F/sporadic E coupling at Chung-Li, especially for postsunset periods of sunspot maximum years, J. Geophys. Res., 108(A4), 1148, doi:10.1029/2002JA009541, 2003.

  14. Carrasco, A. J., I. S. Batisat, and M. A. Abdu, The prereversal enhancement in the vertical drift for Fortaleza and sporadic E layer, J. Atmos. Sol.-Terr. Phys., 67, 1610–1617, 2005.

  15. Carrasco, A. J., I. S. Batista, and M. A. Abdu, Simulation of the sporadic E layer response to prereversal associated evening vertical electric field enhancement near dip equator, J. Geophys. Res., 112, A06324, doi:10.10292006JA01243, 2007.

  16. Chen, P. R., Two-day oscillations of the equatorial ionization anomaly, J. Geophys. Res., 979(A5), 6343–6357, 1992.

  17. Eccles, J. V., A simple model of low-latitude electric fields, J. Geophys. Res., 103, 26,699–26,708, 1998.

  18. Farley, D. T., B. B. Balsley, and R. F. Woodman, Equatorial spread F—Implications VHF radar observations, J. Geophys. Res., 75(34), 7199, 1970.

  19. Farley, D. T., E. Bonelli, B. G. Fejer, and M. F. Larsen, The prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 91, 13,723–13,728, 1986.

  20. Fejer, B. G., L. Scherliess, and E. R. de Paula, Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19,859–19,870, 1999.

  21. Fesen, C. G., G. Crowley, R. G. Roble et al., Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts, Geophys. Res. Lett., 27(13), 1851–1854, 2000.

  22. Forbes, J. M., Planetary waves in the thermosphere-ionosphere system, J. Geomag. Geoelectr., 48, 91, 1996.

  23. Forbes, J. M., Wave coupling between the lower and upper atmosphere: case study of an ultra-fast Kelvin Wave, J. Atmos. Sol.-Terr. Phys., 62, 1603–1621, 2000.

  24. Forbes, J. M. and S. Leveroni, Quasi16-day oscillations in the ionosphere, Geophys. Res. Lett., 19, 981–984, 1992.

  25. Fukao, S., Coupling Processes in the Equatorial Atmosphere (CPEA): a project overview, J. Meteor. Soc. Jpn., 84A, 1–18, 2006.

  26. Fukao, S., T. Yokoyama, T. Tayama et al., Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesia, Ann. Geophys., 24(5), 1411–1418, 2006.

  27. Fritts, D. C., M. A. Abdu, B. R. Batista, I. S. Batista, P. P. Batista, R. Buriti, B. R. Clemesha, T. Dautermann, E. de Paula, B. J. Fechine, B. Fejer, D. Gobbi, J. Haase, F. Kamalabadi, B. Laughman, L. M. Lima, H.-L. Liu, A. Medeiros, P.-D. Pautet, D. M. Riggin, F. São Sabbas, J. H. A. Sobral, P. Stamus, H. Takahashi, M. J. Taylor, S. L. Vadas, and C. M. Wrasse, The Spread F Experiment (SpreadFEx): Program overview and first results, Earth Planets Space, 61, this issue, 411–430, 2009.

  28. Gurubaran, S., S. Sridharan, T. K. Ramkumar, and R. Rajaram, The meso-spheric quasi 2-day wave over Tirunelveli, J. Atmos. Terr. Phys., 63, 975–985, 2001.

  29. Hagan, M. E., J. M. Forbes, and F. Vial, Numerical investigation of the propagation of the quasi-two-daywave into the lower thermosphere, J. Geophys. Res., 98(D12), 23,193–23,205, 1993.

  30. Haerendel, G., Theory of equatorial spread F, report, Maxplanck-Institut fur Extraterre. Phys., Garching, Germany, 1973.

  31. Haerendel, G. and J. V. Eccles, The role of the equatorial electrojet in the evening ionosphere, J. Geophys. Res., 97, 1224–1243, 1992.

  32. Haerendel, G., J. V. Eccles, and S. Kir, Theory of modeling the equatorial evening ionosphere and the origin of the shear in the Horizontal plasma flow, J. Geophys. Res., 97, 1209–1223, 1992.

  33. Haldoupis, C., D. Pancheva, and Mitchell, A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers, J. Geophys. Res., 109, A02302, doi:10.1029/2003JA010253, 2004.

  34. Heelis, R. A., P. C. Kendall, R. J. Moffet, D. W. Windle, and H. Rishbeth, Electrical coupling of the E- and F-region and its effects on the F-region drifts and winds, Planet. Space Sci., 22, 743–756, 1974.

  35. Hocking, W. K., B. Fuller, and B. Vandepeer, Real-time determination of meteor related parameters utilizing modern digital technology, J. Atmos. Sol.-Terr. Phys., 63(2–3), 155–169, 2001.

  36. Hysell, D. L. and E. Kudeki, Collisional shear instability in the equatorial F region ionosphere, J. Geophys. Res., 109, A11301, doi:10.1029/ 2004JA010636, 2004.

  37. Kudeki, E. and S. Bhattacharyya, Postsunset vortex in equatorial F region plasma drifts and implications for ottomside spread F, J. Geophys. Res., 104(A12), 28,163–28,170, 1999.

  38. Maruyama, T., A diagnostic model for equatorial spread F, 1, Model description and application to electric fields and neutral wind effects, J. Geophys. Res., 93, 14,611–14,622, 1988.

  39. Mendillo, M., J. Meriwether, and M. Biondi, Testing the thermospheric neutral wind suppression mechanism for the day-to-day variability of equatorial spread F, J. Geophys. Res., 106, 3655–3663, 2001.

  40. Miyoshi, Y. and T. Hirooka, A numerical experiment of excitation of the 5-day wave by a GCM, J. Atmos. Sci., 56, 1698–1707, 1999.

  41. Ogawa, T., Y. Otsuka, K. Shiokawa, A. Saito, and M. Nishioka, Ionospheric disturbances over Indonesia and their possible association with atmospheric gravity waves from the troposphere, J. Meteor. Soc. Jpn., 84A, 327–342, 2006.

  42. Pancheva, D., N. Mitchell, R. Clark, J. Drobjeva, and J. Lastovicka, Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998–March 2000); influence from below and above, Ann. Geophys., 20(11), 1807–1819, 2002.

  43. Pancheva, D., C. Houldoupis, C. E. Meek, A. H. Manson, and N. J. Mitchell, Evidence of a role for modulated atmospheric tides in the dependence of sporadic E layers on planetary waves, J. Geophys. Res., 108(A5), 1176, doi:101029/2002JA009788, 2003.

  44. Rishbeth, H.,, Planet. Space Sci., 19, 357–369, 1971.

  45. Sastri, J. H., M. A. Abdu, I. S. Batista, and J. H. A. Sobral, Onset Conditions of Equatorial (Range) Spread-F at Fortaleza, Brazil, During the June Solstice, J. Geophys. Res., 102(A11), 24,013–24,021, 1997.

  46. Stephan, A. W., M. Colerico, M. Mendillo, B. W. Reinisch, and D. Anderson, Suppression of equatorial spread F by sporadic E, J. Geophys. Res., 107(A2), 10,1029–10,1034, 2002.

  47. Takahashi, H., L. M. Lima, C. M. Wrasse, M. A. Abdu, I. S. Batista, D. Gobbi, R. A. Buriti, and T. Tsuda, Evidence on 2–4 day modulation of the equatorial ionosphere h’F and mesospheric airglow emission, Geophys. Res. Lett., 32, L12102, doi: 10.1029/2004GL022318, 2005 (submitted).

  48. Takahashi, H., C. M. Wrasse, J. Fechine, D. Pancheva, M. A. Abdu, I. S. Batista, L. M. Lima, P. P. Batista, B. R. Clemesha, N. J. Schuch, K. Shiokawa, D. Gobbi, M. G. Mlynczak, and J. M. Russell, Signatures of Ultra Fast Kelvin waves in the equatorial middle atmosphere and ionosphere, Geophys. Res. Lett., 34, L11108, doi: 10.1029/2007GL029612, 2007.

  49. Tsunoda, R. T., Seeding of equatorial plasma bubbles with electric fields from and Es-layer instability, J. Geophys. Res., 112, A06304, doi: 10.1029/2006JA012103, 2007.

  50. Tsunoda, R. T., R. C. Livingston, and C. L. Rino, Evidence of a velocity shear in bulk plasma motion associated with post-sunset rise of the equatorial F layer, Geophys. Res. Lett., 8(7), 807–810, 1981.

  51. Vincent, R. A., Long-period motions in the equatorial mesosphere, J. Atmos. Terr. Phys., 55, 1067–1080, 1993.

  52. Vineeth, C., T. K. Pant, C. V. Devasia et al., Atmosphere-ionosphere coupling observed over the dip equatorial MLTI region through the quasi 16-day wave, Geophys. Res. Lett., 34(12), L12102, 2007.

  53. Yokoyama, T., Fukao S., and Yamamoto M., Relationship of the onset of equatorial F region irregularities with the sunset terminator observed with the Equatorial Atmosphere Radar, Geophys. Res. Lett., 31(24), L24804, 2004.

Download references

Author information

Correspondence to M. A. Abdu.

Rights and permissions

Reprints and Permissions

About this article

Key words

  • Vertical coupling
  • atmosphere-ionosphere
  • spread F
  • planetary waves
  • sporadic E layers
  • prereversal electric field