Skip to main content

Equatorial GPS ionospheric scintillations over Kototabang, Indonesia and their relation to atmospheric waves from below

Abstract

Using Global Positioning System (GPS) satellites, we have been conducting equatorial ionospheric scintillation observations at Kototabang, Indonesia since January 2003. Scintillations caused by equatorial plasma bubbles appear between 2000 and 0100 LT in equinoctial months with a seasonal asymmetry, and their activity decreases with decreasing solar activity. A comparison between scintillation index (S4) and Earth’s brightness temperature (Tbb) variations suggests that the scintillation activity can be related to tropospheric disturbances over the Indian Ocean to the west of Kototabang. To understand better the reasons of day-to-day variability of S4, we analyze S4, Tbband lower thermospheric neutral wind () data. The results show that S4 fluctuates with periods of about 2.5, 5, 8, 14 and 25 days, possibly due to atmospheric waves from below and that similar periods are also found in the Tbband variations. Using a general circulation model, we made numerical simulations to determine the behavior of neutral wind in the equatorial thermosphere. The results indicate the following: (1) 2- to 20-day waves dissipate rapidly above about an altitude of 125 km, and 0.5- to 3-hour waves become predominant above 100 km, (2) zonal winds above 200 km altitude are, on the whole, eastward during sunset-sunrise, (3) zonal wind patterns due to short-period (1–4 h) atmospheric gravity waves (AGWs) above 120 km altitude change day by day, exhibit wavy structures with scale lengths of about 30–1000 km and, as a whole, move eastward at about 100−1 while changing patterns over time. These simulations suggest that the Rayleigh-Taylor instability responsible for plasma bubble generation can be seeded by AGWs with short periods of about 0.5–3 h, and that background conditions necessary for this instability are modulated by planetary-scale atmospheric waves propagating up to an altitude of about 120 km from below.

References

  1. Abdu, M. A., Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F, J. Atmos. Sol.-Terr. Phys., 63, 869–884, 2001.

    Article  Google Scholar 

  2. Abdu, M. A., P. P. Batista, I. S. Batista, C. G. M. Brum, A. J. Carrasco, and B. W. Reinisch, Planetary wave oscillations in mesospheric winds, equatorial evening prereversal electric field and spread F, Geophys. Res. Lett., 33, L07107, doi:10.1029/2005GL024837, 2006a.

    Google Scholar 

  3. Abdu, M. A., T. K. Ramkumar, I. S. Batista, C. G. M. Brum, H. Takahashi, B. W. Reinisch, and J. H. Sobral, Planetary wave signatures in the equatorial atmosphere-ionosphere system, and mesosphere-E- an F-region coupling, J. Atmos. Sol.-Terr. Phys., 68, 509–522, 2006b.

    Article  Google Scholar 

  4. Basu, Su. and S. Basu, Equatorial scintillations: Advances since ISEA-6, J. Atmos. Terr. Phys., 47, 753–768, 1985.

    Article  Google Scholar 

  5. Basu, Su., S. Basu, J. P. MuClure, W. B. Hanson, and H. E. Whitney, High resolution topside in situ data of electron densities and VHF/GHz scintillations in the equatorial region, J. Geophys. Res., 88, 403–415, 1983.

    Article  Google Scholar 

  6. Basu, S., E. MacKenzie, and Su. Basu, Ionospheric constraints of VHF/UHF communications links during solar maximum and minimum periods, Radio Sci., 23, 363–378, 1988.

    Article  Google Scholar 

  7. Beach, T. L. and P. M. Kintner, Simultaneous Global Positioning System observations of equatorial scintillations and total electron content fluctuations, J. Geophys. Res., 104, 22,553–22,565, 1999.

    Article  Google Scholar 

  8. Burke, W. J., C. Y. Huang, L. C. Gentile, and L. Bauer, Seasonal-longitudinal variability of equatorial plasma bubbles, Ann. Geophys., 22, 3089–3098, 2004.

    Article  Google Scholar 

  9. Farley, D. T., E. Bonelli, B. G. Fejer, and M. F. Larsen, The prereversal of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 91, 13,723–13,728, 1986.

    Article  Google Scholar 

  10. Forbes, J. M., Planetary waves in the thermosphere-ionosphere system, J. Geomag. Geoelectr., 48, 91–98, 1996.

    Article  Google Scholar 

  11. Fukao, S., Y. Ozawa, T. Yokoyama, M. Yamamoto, and R. T. Tsunoda, First observations of the spatial structure of F region 3-m-scale field-aligned irregularities with Equatorial Atmosphere Radar in Indonesia, J. Geophys. Res., 109, A02304, doi:10.1029/2003JA010096, 2004.

    Google Scholar 

  12. Fukao, S., T. Yokoyama, T. Tayama, M. Yamamoto, T. Maruyama, and S. Saito, Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesia, Ann. Geophys., 24, 1411–1418, 2006.

    Article  Google Scholar 

  13. Gentile, L. C., W. J. Burke, and F. J. Rich, A global climatology for equatorial plasma bubbles in the topside ionosphere, Ann. Geophys., 24, 163–172, 2006.

    Article  Google Scholar 

  14. Hocke, K. and T. Tsuda, Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation, Geophys. Res. Lett., 28, 2815–2818, 2001.

    Article  Google Scholar 

  15. Hysell, D. L. and E. Kudeki, Collisional shear instability in the equatorial F region ionosphere, J. Geophys. Res., 109, A11301, doi:10. 1029/2004JA010636, 2004.

    Article  Google Scholar 

  16. Hysell, D. L., M. C. Kelley, W. E. Swartz, and R. F. Woodman, Seeding and layering of equatorial spread F by gravity waves, J. Geophys. Res., 95, 17,253–17,260, 1990.

    Article  Google Scholar 

  17. Hysell, D. L., J. Chun, and J. L. Chau, Bottom-type scattering layers and equatorial spread F, Ann. Geophys., 22, 4061–4069, 2004.

    Article  Google Scholar 

  18. Hysell, D. L., M. F. Larsen, C. M. Swenson, and T. F. Wheeler, Shear flow effects at the onset of equatorial spread F, J. Geophys. Res., 111, A11317, doi:10.1029/2006JA011963, 2006.

    Article  Google Scholar 

  19. Kelley, M. C., M. F. Larsen, C. LaHoz, and J. P. McClure, Gravity wave initiation of equatorial spread F: A case study, J. Geophys. Res., 86, 9087–9100, 1981.

    Article  Google Scholar 

  20. Kudeki, E. and S. Bhattacharyya, Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F, J. Geophys. Res., 104, 28,163–28,170, 1999.

    Article  Google Scholar 

  21. Laštovička, J., Forcing of the ionosphere by waves from below, J. Atmos. Sol.-Terr. Phys., 68, 479–497, 2006.

    Article  Google Scholar 

  22. Lin, C. S., T. J. Immel, H. C. Yeh, S. B. Mende, and J. L. Burch, Simultaneous observations of equatorial plasma depletion by IMAGE and ROCSAT-1 satellites, J. Geophys. Res., 110, A06304, doi:10.1029/2004JA010774, 2005.

    Google Scholar 

  23. Maruyama, T. and N. Matuura, Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res., 89, 10,903–10,912, 1984.

    Article  Google Scholar 

  24. McClure, J. P., S. Singh, D. K. Bamgboye, F. S. Johnson, and H. Kil, Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding, J. Geophys. Res., 103, 29,119–29,135, 1998.

    Article  Google Scholar 

  25. Miyoshi, Y., Temporal variation of nonmigrating diurnal tide and its relation with the moist convective activity, Geophys. Res. Lett., 33, L11815, doi:10.1029/2006GL026702, 2006.

    Article  Google Scholar 

  26. Miyoshi, Y. and H. Fujiwara, Excitation mechanism of intraseasonal oscillation in the equatorial mesosphere and lower thermosphere, J. Geophys. Res., 111, D14108, doi:10.1029/2005JD006993, 2006.

    Article  Google Scholar 

  27. Miyoshi, Y. and H. Fujiwara, Gravity waves in the thermosphere simulated by a general circulation model, J. Geophys. Res., 113, D01101, doi: 10.1029/2007JD008874, 2008.

    Google Scholar 

  28. Ogawa, T., E. Sagawa, Y. Otsuka, K. Shiokawa, T. J. Immel, S. B. Mende, and P. Wilkinson, Simultaneous ground- and satellite-based airglow observations of geomagnetic conjugate plasma bubbles in the equatorial anomaly, Earth Planets Space, 57, 385–392, 2005.

    Article  Google Scholar 

  29. Ogawa, T., Y. Otsuka, K. Shiokawa, A. Saito, and M. Nishioka, Ionospheric disturbances over Indonesia and their possible association with atmospheric gravity waves from the troposphere, J. Meteor. Soc. Jpn., 84A, 327–342, 2006.

    Article  Google Scholar 

  30. Otsuka, Y., K. Shiokawa, T. Ogawa, and P. Wilkinson, Geomagnetic conjugate observations of equatorial airglow depletions, Geophys. Res. Lett., 29(15), doi:10.1029/2002GL015347, 2002.

    Google Scholar 

  31. Otsuka, Y., K. Shiokawa, T. Ogawa, T. Yokoyama, M. Yamamoto, and S. Fukao, Spatial relationship of equatorial plasma bubbles and field-aligned irregularities observed with an all-sky airglow imager and the Equatorial Atmosphere Radar, Geophys. Res. Lett., 31, L20802, doi:10.1029/2004GL020869, 2004.

    Article  Google Scholar 

  32. Otsuka, Y., K. Shiokawa, and T. Ogawa, Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely-spaced GPS receivers in Indonesia, J. Meteor. Soc. Jpn., 84A, 343–351, 2006.

    Article  Google Scholar 

  33. Prakash, S., Production of electric field perturbations by gravity wave winds in the E region suitable for initiating equatorial spread F, J. Geophys. Res., 104, 10,051–10,069, 1999.

    Article  Google Scholar 

  34. Röttger, J., Travelling disturbances in the equatorial ionosphere and their association with penetrative cumulus convection, J. Atmos. Terr. Phys., 39, 987–998, 1977.

    Article  Google Scholar 

  35. Röttger, J., Equatorial spread-F by electric fields and atmospheric gravity waves generated by thunderstorms, J. Atmos. Terr. Phys., 43, 453–462, 1981.

    Article  Google Scholar 

  36. Saito, S. and T. Maruyama, Large-scale longitudinal variation in ionospheric height and equatorial spread F occurrences observed by ionosondes, Geophys. Res. Lett., 34, L16109, doi:10.1029/2007GL030618, 2007.

    Article  Google Scholar 

  37. Shiokawa, K., Y. Otsuka, T. Ogawa, and P. Wilkinson, Time evolution of high-altitude plasma bubbles imaged at geomagnetic conjugate points, Ann. Geophys., 22, 3137–3143, 2004.

    Article  Google Scholar 

  38. Shiokawa, K., Y. Otsuka, and T. Ogawa, Quasiperiodic southward moving waves in 630-nm airglow images in the equatorial thermosphere, J. Geophys. Res., 111, A06301, doi:10.1029/2005JA011406, 2006.

    Google Scholar 

  39. Singh, S., F. S. Johnson, and R. A. Power, Gravity wave seeding of equatorial plasma bubbles, J. Geophys. Res., 102, 7399–7410, 1997.

    Article  Google Scholar 

  40. Sridharan, S., T. Tsuda, R. A. Vincent, T. Nakamura, and Effendy, A report on radar observations of 5–8-day waves in the equatorial MLT region, J. Meteor. Soc. Jpn., 84A, 295–304, 2006.

    Article  Google Scholar 

  41. Sultan, F. J., Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 101, 26,875–26,891, 1996.

    Article  Google Scholar 

  42. Takahashi, H., L. M. Lima, C. W. Wrasse, M. A. Abdu, I. S. Batista, D. Gobbi, R. A. Buriti, and P. P. Batista, Evidence on 2–4 day oscillations of the equatorial ionosphere h′F and mesospheric airglow emissions, Geophys. Res. Lett., 32, L12102, doi:10.1029/2004GL022318, 2005.

    Article  Google Scholar 

  43. Takahashi, H., C. W. Wrasse, D. Pancheva, M. A. Abdu, I. S. Batista, L. M. Lima, P. P. Batista, B. R. Clemesha, and K. Shiokawa, Signatures of 3–6 day planetary waves in the equatorial mesosphere and ionosphere, Ann. Geophys., 24, 3343–3350, 2006.

    Article  Google Scholar 

  44. Takahashi, H. et al., Signatures of ultra fast Kelvin waves in the equatorial middle atmosphere and ionosphere, Geophys. Res. Lett., 34, L11108, doi:10.1029/2007GL029612, 2007.

    Article  Google Scholar 

  45. Tsuda, T. and K. Hocke, Application of GPS radio occultation data for studies of atmospheric waves in the middle atmosphere and ionosphere, J. Meteor. Soc. Jpn., 82, 419–426, 2004.

    Article  Google Scholar 

  46. Tsuda, T., M. Nishida, C. Rocken, and R. H. Ware, A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET), J. Geophys. Res., 105, 7257–7273, 2000.

    Article  Google Scholar 

  47. Tsunoda, R. T., On the enigma of day-to-day variability in the equatorial spread F, Geophys. Res. Lett., 32, L08103, doi:10.1029/2005GL022512, 2005.

    Article  Google Scholar 

  48. Vadas, S. L., Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys. Res., 112, A06305, doi:10.1029/2006JA011845, 2007.

    Google Scholar 

  49. Vadas, S. L. and D. C. Fritts, Thermospheric responses to gravity waves arising from mesoscale convective complexes, J. Atmos. Sol.-Terr. Phys., 66, 781–804, 2004.

    Article  Google Scholar 

  50. Vadas, S. L. and D. C. Fritts, Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection, J. Geophys. Res., 111, A10S12, doi:10.1029/2005JA011510, 2006.

    Google Scholar 

  51. Woodman, R. F. and C. LaHoz, Radar observations of F region equatorial irregularities, J. Geophys. Res., 81, 5447–5466, 1976.

    Article  Google Scholar 

  52. Yokoyama, T., S. Fukao, and M. Yamamoto, Relationship of the onset of equatorial F region irregularities with the sunset terminator observed with the Equatorial Atmosphere Radar, Geophys. Res. Lett., 31, L24804, doi:10.1029/2004GL021529, 2004.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ogawa, T., Miyoshi, Y., Otsuka, Y. et al. Equatorial GPS ionospheric scintillations over Kototabang, Indonesia and their relation to atmospheric waves from below. Earth Planet Sp 61, 397–410 (2009). https://doi.org/10.1186/BF03353157

Download citation

Key words

  • Equatorial ionosphere
  • GPS scintillation
  • plasma bubble
  • atmospheric wave
  • tropospheric disturbance