Special Issue: Coupling Processes in the Equatorial Atmosphere (CPEA)
- Letter
- Open access
- Published:
Relative effects of electric field and neutral wind on positive ionospheric storms
Earth, Planets and Space volume 61, pages 439–445 (2009)
Abstract
The paper studies the relative importance of penetrating eastward electric field (PEEF) and direct effects of equatorward neutral wind in leading to positive ionospheric storms at low-mid latitudes using observations and modeling. The observations show strong positive ionospheric storms in total electron content (TEC) and peak electron density (Nmax) at low-mid latitudes in Japan longitudes (≈125°E–145°E) during the first main phase (started at sunrise on 08 November) of a super double geomagnetic storm during 07–11 November 2004. The model results obtained using the Sheffield University Plasmashpere Ionosphere Model (SUPIM) show that the direct effects of storm-time equatorward neutral wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) can be the main driver of positive ionospheric storms at low-mid latitudes except in Nmax around the equator. The equatorward wind without PEEF can also result in stronger positive ionospheric storms than with PEEF. Though PEEF on its own is unlikely to cause positive ionospheric storms, it can lead to positive ionospheric storms in the presence of an equatorward wind.
References
Abdu, M. A., Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions, J. Atmos. Sol. Terr. Phys., 59(13), 1505, 1997.
Anderson, D. N., A theoretical study of the ionospheric F region equatorial anomaly, I, Theory, Planet. Space Sci., 21, 409, 1973.
Appleton, E. V., Two anomalies in the ionosphere, Nature, 157, 691, 1946.
Bailey, G. J. and N. Balan, A low latitude ionosphere-plasmasphere model, in STEP Hand Book of ionospheric models, edited by R. W. Schunk, p. 173, Utah State University, Logan, UT 84322-4405, 1996.
Balan, N. and G. J. Bailey, Equatorial plasma fountain and its effects—possibility of an additional layer, J. Geophys. Res., 100, 21421, 1995.
Balan, N. and P. B. Rao, Dependence of ionospheric response on the local time of sudden commencement and intensity of geomagnetic storms, J. Atoms. Terr. Phys., 52, 269, 1990.
Balan, N., I. S. Batista, M. A. Abdu, J. Macdougall, and G. J. Bailey, Physical mechanism and statistics of occurrence of an additional layer in the equatorial ionosphere, J. Geophys. Res., 103, 29169, 1998.
Balan, N., et al., Simultaneous mesosphere/lower thermosphere and ther-mospheric F region observations during geomagnetic storms, J. Geo-phys. Res., 109, A04308, doi.:10.1029/2003JA009982, 2003.
Basu, S., Sa. Basu, K. M. Groves, H. C. Yeh, F. J. Rich, P. J. Sultan, and M. J. Keskinen, Response of the equatorial ionosphere to the great magnetic storm of July 15, 2000, Geophys. Res. Lett., 28(18), 3577, 2001.
Blanc, M. and A. D. Richmond, the ionospheric disturbance dynamo, J. Geophys. Res., 85, 1669, 1980.
Fejer, B. G., E. R. Depaula, S. A. Gonzales, and R. F. Woodman, Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res., 96, 13901, 1991.
Fejer, B. G., J. W. Jensen, T. Kikuchi, M. A. Abdu, and J. L. Chau, Equatorial ionospheric electric fields during the November 2004 magnetic storm, J. Geophys. Res., 2007 (in press).
Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan, Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99, 3893, 1994.
Hanson, W. B. and R. J. Moffett, Ionisation transport effects in the equatorial F region, J. Geophys. Res., 71, 5559, 1966.
Hedin, A. E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649, 1987.
Hedin, A. E., et al., Revised global model of thermosphere winds using satellite and ground-based observations, J. Geophys. Res., 96, 7657, 1991.
Huba, J. D., G. Joyce, and J. A. Fedder, Semi2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geo-phys. Res., 105, 23035, 2000.
Kelley, M. C., M. N. Vlasov, J. C. Foster, and A. J. Coster, A quantitative explanation for the phenomenon known as torm-enhanced density, Geophys. Res. Lett., 31, L19809, doi:10.1029/2004GL020875, 2004.
Kikuchi, T., H. Luhr, K. Schlegel, H. Tachihara, M. Shinohara, and T.-I. Kitamura, Penetration of auroral electric fields to the equator during a substorm, J. Geophys. Res., 105, 23251, 2000.
Lin, C. H., A. D. Richmond, R. A. Heelis, G. J. Bailey, G. Lu, J. Y. Liu, H. C. Yeh, and S. Y. Su, Theoretical study of the low and mid latitude ionospheric electron density enhancement during the October 2003 super storm: Relative importance of the neutral wind and the electric field, J. Geophys. Res., 110, A12312, doi:10.1029/2005JA011304, 2005.
Mannucci, A. J., B. T. Tsurutani, B. A. Iijima, A. Komjathy, A. Saito, W. D. Gonzalez, F. L. Guarnieri, J. U. Kozyra, and R. Skoug, Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”, Geophys. Res. Lett., 32, L12S02, doi:10.1029/2004GL021467, 2005.
Martyn, D. F., Theory of height and ionisation density changes at the maximum of a Chapman-like region, taking account of ion production, decay, diffusion and total drift, Proceedings Cambridge Conference, p. 254, Physical Society, London, 1955.
Maruyama, T. and M. Nakamura, Conditions for intense ionospheric storms expanding to lower mid latitudes, J. Geophys. Res., 112, A05310, doi:10.1029/2006JA012226, 2007.
Matsushita, S., A study of the morphology of ionospheric storms, J. Geophys. Res., 13, 305–321, 1959.
Matuura, N., Theoretical models of ionospheric storms, Space Sci. Rev., 13, 124–189, 1972.
Mitra, S. K., Geomagnetic control of region F2 of the ionosphere, Nature, 158, 668, 1946.
Namba, S. and K.-I. Maeda, Radio Wave Propagation, 86pp., Corona, Tokyo, 1939.
Namgaladze, A. A., M. Forster, and R. Y. Yurik, Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model, Ann. Geophys., 18, 461–477, 2000.
Otsuka, Y., et al., A new technique for mapping of total electron content using GPS netwrok in Japan, Earth Planets Space, 54, 63–70, 2002.
Prolss, G. W., Ionospheric F region storms, in Handbook of Atmospheric Electrodynamics, edited by H. Volland, 195–248, CRC Press, Boca Raton, 1995.
Reddy, C. A., S. Fukao, T. Takami, M. Yamamoto, T. Tsuda, T. Nakamura, and S. Kato, A MU Radar-based study of mid-latitude F region response to a geomagnetic disturbance, J. Geophys. Res., 95, 21,077, 1990.
Richmond, A. D. and R. G. Roble, Dynamic effects of aurora-generated gravity waves on the mid-latitude ionosphere, J. Atmos. Terr. Phys., 41, 841, 1979.
Rishbeth, H., F-region storms and thermospheric dynamics, J. Geomag. Geoelectr., 43, 513, 1991.
Sahai, Y., P. R. Fagundes, and F. Becker-Guedes, Longitudinal differences observed in the ionospheric F-region during the major geomagnetic storm of 31 march 2001, Ann. Geophys., 22(9), 3221, 2004.
Saito, A. and T. Araki, DMSP observation of dayside oxygen ion uplift to 840 km altitude during the October 30, 2003 magnetic super storm, Geophys. Res. Lett., 2006 (submitted).
Skoug, R. M., J. T. Gosling, J. T. Steinberg, D. J. McComas, C. W. Smith, N. F. Ness, Q. Hu, and L. F. Burlaga, Extremely high speed solar wind: October 29–30, 2003, J. Geophys. Res., 109, A09102, doi:10.1029/2004JA010494, 2004.
Tsurutani, B., et al., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, doi:10.1029/2003JA010342, 2004.
Watanabe, S., K.-I. Oyama, and M. A. Abdu, Computer simulation of electron and ion densities and temperatures in the equatorial F region and comparison with Hinotori results, J. Geophys. Res., 100, 14581, doi:10.1029/95JA01356, 1995.
Werner, S., R. Bauske, and G. W. Prolss, On the origin of positive ionospheric storms, Adv. Space Res., 24, 1485–1489, 1999.
Author information
Authors and Affiliations
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Balan, N., Alleyne, H., Otsuka, Y. et al. Relative effects of electric field and neutral wind on positive ionospheric storms. Earth Planet Sp 61, 439–445 (2009). https://doi.org/10.1186/BF03353160
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1186/BF03353160