Skip to main content

Relative effects of electric field and neutral wind on positive ionospheric storms

Abstract

The paper studies the relative importance of penetrating eastward electric field (PEEF) and direct effects of equatorward neutral wind in leading to positive ionospheric storms at low-mid latitudes using observations and modeling. The observations show strong positive ionospheric storms in total electron content (TEC) and peak electron density (Nmax) at low-mid latitudes in Japan longitudes (≈125°E–145°E) during the first main phase (started at sunrise on 08 November) of a super double geomagnetic storm during 07–11 November 2004. The model results obtained using the Sheffield University Plasmashpere Ionosphere Model (SUPIM) show that the direct effects of storm-time equatorward neutral wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) can be the main driver of positive ionospheric storms at low-mid latitudes except in Nmax around the equator. The equatorward wind without PEEF can also result in stronger positive ionospheric storms than with PEEF. Though PEEF on its own is unlikely to cause positive ionospheric storms, it can lead to positive ionospheric storms in the presence of an equatorward wind.

References

  1. Abdu, M. A., Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions, J. Atmos. Sol. Terr. Phys., 59(13), 1505, 1997.

    Article  Google Scholar 

  2. Anderson, D. N., A theoretical study of the ionospheric F region equatorial anomaly, I, Theory, Planet. Space Sci., 21, 409, 1973.

    Article  Google Scholar 

  3. Appleton, E. V., Two anomalies in the ionosphere, Nature, 157, 691, 1946.

    Article  Google Scholar 

  4. Bailey, G. J. and N. Balan, A low latitude ionosphere-plasmasphere model, in STEP Hand Book of ionospheric models, edited by R. W. Schunk, p. 173, Utah State University, Logan, UT 84322-4405, 1996.

    Google Scholar 

  5. Balan, N. and G. J. Bailey, Equatorial plasma fountain and its effects—possibility of an additional layer, J. Geophys. Res., 100, 21421, 1995.

    Article  Google Scholar 

  6. Balan, N. and P. B. Rao, Dependence of ionospheric response on the local time of sudden commencement and intensity of geomagnetic storms, J. Atoms. Terr. Phys., 52, 269, 1990.

    Article  Google Scholar 

  7. Balan, N., I. S. Batista, M. A. Abdu, J. Macdougall, and G. J. Bailey, Physical mechanism and statistics of occurrence of an additional layer in the equatorial ionosphere, J. Geophys. Res., 103, 29169, 1998.

    Article  Google Scholar 

  8. Balan, N., et al., Simultaneous mesosphere/lower thermosphere and ther-mospheric F region observations during geomagnetic storms, J. Geo-phys. Res., 109, A04308, doi.:10.1029/2003JA009982, 2003.

    Google Scholar 

  9. Basu, S., Sa. Basu, K. M. Groves, H. C. Yeh, F. J. Rich, P. J. Sultan, and M. J. Keskinen, Response of the equatorial ionosphere to the great magnetic storm of July 15, 2000, Geophys. Res. Lett., 28(18), 3577, 2001.

    Article  Google Scholar 

  10. Blanc, M. and A. D. Richmond, the ionospheric disturbance dynamo, J. Geophys. Res., 85, 1669, 1980.

    Article  Google Scholar 

  11. Fejer, B. G., E. R. Depaula, S. A. Gonzales, and R. F. Woodman, Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res., 96, 13901, 1991.

    Article  Google Scholar 

  12. Fejer, B. G., J. W. Jensen, T. Kikuchi, M. A. Abdu, and J. L. Chau, Equatorial ionospheric electric fields during the November 2004 magnetic storm, J. Geophys. Res., 2007 (in press).

    Google Scholar 

  13. Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan, Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99, 3893, 1994.

    Article  Google Scholar 

  14. Hanson, W. B. and R. J. Moffett, Ionisation transport effects in the equatorial F region, J. Geophys. Res., 71, 5559, 1966.

    Article  Google Scholar 

  15. Hedin, A. E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649, 1987.

    Article  Google Scholar 

  16. Hedin, A. E., et al., Revised global model of thermosphere winds using satellite and ground-based observations, J. Geophys. Res., 96, 7657, 1991.

    Article  Google Scholar 

  17. Huba, J. D., G. Joyce, and J. A. Fedder, Semi2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geo-phys. Res., 105, 23035, 2000.

    Article  Google Scholar 

  18. Kelley, M. C., M. N. Vlasov, J. C. Foster, and A. J. Coster, A quantitative explanation for the phenomenon known as torm-enhanced density, Geophys. Res. Lett., 31, L19809, doi:10.1029/2004GL020875, 2004.

    Article  Google Scholar 

  19. Kikuchi, T., H. Luhr, K. Schlegel, H. Tachihara, M. Shinohara, and T.-I. Kitamura, Penetration of auroral electric fields to the equator during a substorm, J. Geophys. Res., 105, 23251, 2000.

    Article  Google Scholar 

  20. Lin, C. H., A. D. Richmond, R. A. Heelis, G. J. Bailey, G. Lu, J. Y. Liu, H. C. Yeh, and S. Y. Su, Theoretical study of the low and mid latitude ionospheric electron density enhancement during the October 2003 super storm: Relative importance of the neutral wind and the electric field, J. Geophys. Res., 110, A12312, doi:10.1029/2005JA011304, 2005.

    Article  Google Scholar 

  21. Mannucci, A. J., B. T. Tsurutani, B. A. Iijima, A. Komjathy, A. Saito, W. D. Gonzalez, F. L. Guarnieri, J. U. Kozyra, and R. Skoug, Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”, Geophys. Res. Lett., 32, L12S02, doi:10.1029/2004GL021467, 2005.

    Article  Google Scholar 

  22. Martyn, D. F., Theory of height and ionisation density changes at the maximum of a Chapman-like region, taking account of ion production, decay, diffusion and total drift, Proceedings Cambridge Conference, p. 254, Physical Society, London, 1955.

    Google Scholar 

  23. Maruyama, T. and M. Nakamura, Conditions for intense ionospheric storms expanding to lower mid latitudes, J. Geophys. Res., 112, A05310, doi:10.1029/2006JA012226, 2007.

    Google Scholar 

  24. Matsushita, S., A study of the morphology of ionospheric storms, J. Geophys. Res., 13, 305–321, 1959.

    Article  Google Scholar 

  25. Matuura, N., Theoretical models of ionospheric storms, Space Sci. Rev., 13, 124–189, 1972.

    Article  Google Scholar 

  26. Mitra, S. K., Geomagnetic control of region F2 of the ionosphere, Nature, 158, 668, 1946.

    Article  Google Scholar 

  27. Namba, S. and K.-I. Maeda, Radio Wave Propagation, 86pp., Corona, Tokyo, 1939.

    Google Scholar 

  28. Namgaladze, A. A., M. Forster, and R. Y. Yurik, Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model, Ann. Geophys., 18, 461–477, 2000.

    Article  Google Scholar 

  29. Otsuka, Y., et al., A new technique for mapping of total electron content using GPS netwrok in Japan, Earth Planets Space, 54, 63–70, 2002.

    Article  Google Scholar 

  30. Prolss, G. W., Ionospheric F region storms, in Handbook of Atmospheric Electrodynamics, edited by H. Volland, 195–248, CRC Press, Boca Raton, 1995.

    Google Scholar 

  31. Reddy, C. A., S. Fukao, T. Takami, M. Yamamoto, T. Tsuda, T. Nakamura, and S. Kato, A MU Radar-based study of mid-latitude F region response to a geomagnetic disturbance, J. Geophys. Res., 95, 21,077, 1990.

    Article  Google Scholar 

  32. Richmond, A. D. and R. G. Roble, Dynamic effects of aurora-generated gravity waves on the mid-latitude ionosphere, J. Atmos. Terr. Phys., 41, 841, 1979.

    Article  Google Scholar 

  33. Rishbeth, H., F-region storms and thermospheric dynamics, J. Geomag. Geoelectr., 43, 513, 1991.

    Article  Google Scholar 

  34. Sahai, Y., P. R. Fagundes, and F. Becker-Guedes, Longitudinal differences observed in the ionospheric F-region during the major geomagnetic storm of 31 march 2001, Ann. Geophys., 22(9), 3221, 2004.

    Article  Google Scholar 

  35. Saito, A. and T. Araki, DMSP observation of dayside oxygen ion uplift to 840 km altitude during the October 30, 2003 magnetic super storm, Geophys. Res. Lett., 2006 (submitted).

    Google Scholar 

  36. Skoug, R. M., J. T. Gosling, J. T. Steinberg, D. J. McComas, C. W. Smith, N. F. Ness, Q. Hu, and L. F. Burlaga, Extremely high speed solar wind: October 29–30, 2003, J. Geophys. Res., 109, A09102, doi:10.1029/2004JA010494, 2004.

    Google Scholar 

  37. Tsurutani, B., et al., Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, doi:10.1029/2003JA010342, 2004.

    Google Scholar 

  38. Watanabe, S., K.-I. Oyama, and M. A. Abdu, Computer simulation of electron and ion densities and temperatures in the equatorial F region and comparison with Hinotori results, J. Geophys. Res., 100, 14581, doi:10.1029/95JA01356, 1995.

    Article  Google Scholar 

  39. Werner, S., R. Bauske, and G. W. Prolss, On the origin of positive ionospheric storms, Adv. Space Res., 24, 1485–1489, 1999.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Balan, N., Alleyne, H., Otsuka, Y. et al. Relative effects of electric field and neutral wind on positive ionospheric storms. Earth Planet Sp 61, 439–445 (2009). https://doi.org/10.1186/BF03353160

Download citation

Key words

  • Ionospheric storms
  • electric field
  • neutral wind