Skip to main content

Possible influence of ultra-fast Kelvin wave on the equatorial ionosphere evening uplifting

Abstract

Equatorial 3.5-day ultra-fast Kelvin wave was observed in the MLT zonal wind measured by meteor radar at Cariri (7.4°S, 36.5°W, geomag. 8°S) and in the stratosphere-mesosphere temperature structures from the TIMED/SABER data. The ionospheric F-layer bottom-side virtual height hT’F and the critical frequency foF2 observed at Fortaleza (3.9°S, 38.4°W, geomag. 5°S) also showed similar oscillation structures, indicating an influence of the Kelvin wave in the F region height and modulation of E × B uplifting during the evening period. Consequently the ionospheric spread F onset time was also modulated in the same period, around 4 days.

References

  1. Abdu, M. A., J. W. MacDougall, I. S. Batista, J. H. A. Sobral, and P. T. Jayachandran, Equatorial evening prereversal electric field enhancement and sporadic E layer disruption: A manifestation of E and F region coupling, J. Geophys.Res., 108(A6), 1254, doi:10.1029/2002JA009285, 2003.

    Article  Google Scholar 

  2. Abdu, M. A., P. P. Batista, I. S. Batista, C. G. M. Brum, A. J. Carrasco, and B. W. Reinisch, Planetary wave oscillations in mesospheric winds, equatorial evening prereversal electric field and spread F, Geophys. Res. Lett., 33, L07107, doi:10.1029/2005GL024837, 2006.

    Google Scholar 

  3. Abdu, M. A., T. Maruyama, I. S. Batista, S. Saito, and M. Nakamura, Ionospheric Responses to the October 2003 super storm: Longitude/ Local Time Effects over Equatorial-Low and Mid-Latitudes, J. Geophys. Res., 2007 (in press).

    Google Scholar 

  4. Brown, G. M. and D. C. Williams, Pressure variations in the stratosphere and ionosphere, J. Atmos. Terr. Phys., 33, 1321–1328, 1971.

    Article  Google Scholar 

  5. Burke, W. J., C. Y. Huang, L. C. Gentle, and L. Bauer, Seasonal-longitudinal variability of equatorial plasma bubbles, Ann. Geophys., 22, 3089–3098, 2004.

    Article  Google Scholar 

  6. Chen, P. R., Two-day oscillation of the equatorial ionization anomaly, J. Geophys. Res., 97(A5), 6343–6357, 1992.

    Article  Google Scholar 

  7. Eccles, J. V., Modeling investigation of the evening prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 103, 26709–26719, 1998.

    Article  Google Scholar 

  8. Fejer, B. G. and L. Scherliess, Mid-and low-latitude prompt-penetration ionospheric plasma drifts, Geophys. Res. Lett., 25, 3071–3074, 1998.

    Article  Google Scholar 

  9. Forbes, J. M., Planetary Waves in the Thermosphere-Ionosphere System, J. Geomag. Geoelectr., 48, 91, 1996.

    Article  Google Scholar 

  10. Forbes, J. M., Wave coupling between the lower and upper atmosphere: case study of an ultra-fast Kelvin Wave, J. Atmos. Sol.-Terr. Phys., 62, 1603–1621, 2000.

    Article  Google Scholar 

  11. Forbes, J. M. and S. Leveroni, Quasi 16-day oscillation in the ionosphere, Geophys. Res. Lett., 19(10), 981–984, 1992.

    Article  Google Scholar 

  12. Forbes, J. M., S. E. Palo, and X. Zhang, Variability of the ionosphere, J. Atmos. Sol.-Terr. Phys., 62, 685–693, 2000.

    Article  Google Scholar 

  13. Fraser, G., The 5-day wave and ionospheric absorption, J. Atmos. Terr. Phys., 39, 121–124, 1977.

    Article  Google Scholar 

  14. Fukao, S, Coupling Processes in the Equatorial Atmosphere (CPEA): A project overview, J. Meteor. Soc. Jpn., 84A, 1–18, 2006.

    Article  Google Scholar 

  15. Haldoupis, C., D. Pancheva, and N. J. Mitchell, A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers, J. Geophys. Res., 109, A02302, doi:10.1029/2003JA010253, 2004.

    Google Scholar 

  16. Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161, 2006.

    Article  Google Scholar 

  17. Kikuchi, T., H. Lühr, T. Kitamura, O. Saka, and K. Schlegel, Direct penetration of the polar electric field to the equator during DP2 event as detected by the auroral and equatorial magnetometer chains and the EIS-CAT radar, J. Geophys. Res., 101, 17161–17174, 1996.

    Article  Google Scholar 

  18. Lastovicka, J., Forcing of the ionosphere by waves from below, J. Atmos. Sol-Terr. Phys., 68, 479–497, 2006.

    Article  Google Scholar 

  19. Lichstein, G. S., J. M. Forbes, M. A. Coll, H. Takahashi, D. Gobbi, and R. A. Buriti, Quasi-3-day Kelvin wave and the OI(5577A), OH(6,2 Meinel, and O2(0,1) emissions, Geophys. Res. Lett., 29(4), 1043, doi: 10.1029/2001GL031824, 2002.

    Article  Google Scholar 

  20. Lieberman, R. S. and D. Riggin, High resolution Doppler imager observations of Kelvin waves in the equatorial mesosphere and lower thermosphere, J. Geophys. Res., 102(D22), 26117–26130, 1997.

    Article  Google Scholar 

  21. Lima, L. M., P. P. Batista, H. Takahashi, and B. R. Clemesha, Quasi-two-day wave observed by meteor radar at 22.7 S, J. Atmos. Sol.-Terr. Phys., 66(6–9), 529–537, 2004.

    Article  Google Scholar 

  22. Miyoshi, Y. and H. Fujiwara, Excitation mechanism of intraseasonal oscillation in the equatorial mesosphere and lower thermosphere, J. Geophys. Res., 111, D14108, doi:101029/2005JD006993, 2006.

    Article  Google Scholar 

  23. Pancheva, D. and I. Lysenko, Quasi-two-day fluctuations observed in the summer F region electron maximum, Bulgarian Geophys. J., XIV, 2, 1988.

  24. Pancheva, D., N. Mitchell, R. Clark, J. Drobjeva, and J. Lastovicka, Variability in the maximum height of the ionospheric F2-layer over Millstone Hill (September 1998–March 2000); influence from below and above, Ann. Geophys., 20(11), 1807–1819, 2002.

    Article  Google Scholar 

  25. Park, J., K. W. Min, V. P. Kim, H. Kil, J.-J. Lee, H.-J. Kim, E. Lee, and D. Y. Lee, Global distribution of equatorial plasma bubbles in the premidnight sector during solar maximum as observed by KOMPSAT-1 and Defense Meteorological Satellite Program F15, J. Geophys. Res., 110, A07308, doi:10.1029/2004JA010817, 2005.

    Google Scholar 

  26. Riggin, D. M., D. C. Fritts, T. Tsuda, T. Nakamura, and R. A. Vincent, Radar observations of a 3-day Kelvin wave in the equatorial mesosphere, J. Geophys. Res., 102(D22): 26141–26158, 1997.

    Article  Google Scholar 

  27. Roettger, J., Equatorial spread F by electric fields and atmospheric gravity waves generated by thunderstorms, J. Atmos. Terr. Phys., 43, 453–462, 1981.

    Article  Google Scholar 

  28. Russell, J. M., M. G. Mlynczak, L. L. Gordley, J. Tansock, and R. Esplin, An overview of the SABER experiment and preliminary calibration results, Proceedings of the SPIE, 44th Annual Meeting, Denver, Colorado, July 18–23, 3756, p. 277–288, 1999.

    Google Scholar 

  29. Salby, M. L., D. L. Hartmann, P. L. Bailey, and J. C. Gille, Evidence for equatorial Kelvin modes in Nimbus-7 LIMS, J. Atmos. Sci., 41(2), 220–235, 1984.

    Article  Google Scholar 

  30. Sobral, J. H. A., M. A. Abdu, H. Takahashi, M. J. Taylor, E. R. Paula, C. J. Zamlutti, and G. L. Borba, A study of the ionospheric plasma bubbles climatology over Brazil, based on 22 years (1977–1998) of OI 630 nm airglow observation, J. Atmos. Sol-Terr. Phys., 64(12–14), 1517–1524, 2002.

    Article  Google Scholar 

  31. Sridharan, S., S. Gurubaran, and R. Rajaram, Radar observations of the 3.5-day ultra-fast Kelvin wave in the low-latitude mesopause region, J. Atmos. Sol-Terr. Phys., 64, 1241–1250, 2002.

    Article  Google Scholar 

  32. Takahashi, H., R. A. Buriti, D. Gobbi, and P. P. Batista, Equatorial planetary wave signatures observed in mesospheric airglow emissions, J. Atmos. Sol.-Terr. Phys., 64, 1263–1272, 2002.

    Article  Google Scholar 

  33. Takahashi, H., L. M. Lima, C. M. Wrasse, M. A. Abdu, I. S. Batista, D. Gobbi, R. A. Buriti, and P. P. Batista, Evidence on 2–4 day modulation of the equatorial ionosphere h′F and mesospheric airglow emission, Geophys. Res. Lett., 32(12), doi:10.1029/2004GRL022318, 2005.

    Google Scholar 

  34. Takahashi, H., C. M. Wrasse, J. Fechine, D. Pancheva, M. A. Abdu, I. S. Batista, L. M. Lima, P. P. Batista, B. R. Clemesha, N. J. Schuch, K. Shiokawa, D. Gobbi, M. G. Mlynczak, and J. M. Russell, Signatures of Ultra Fast Kelvin waves in the equatorial middle atmosphere and ionosphere, Geophys. Res. Lett., 34, L11108, doi:10.1029/2007GL029612, 2007.

    Article  Google Scholar 

  35. Torrence, C. and G. P. Compo, A practical guide to wavelet analysis, Bull. Am. Meteor. Soc, 79, 61–78, 1998.

    Article  Google Scholar 

  36. Vincent, R. A., Long-period motions in the equatorial mesosphere, J. Atmos. Terr. Phys., 55, 1067–1080, 1993.

    Article  Google Scholar 

  37. Younger, P. T. and N. J. Mitchell, Waves with period near 3 days in the equatorial mesosphere and lower thermosphere over Ascension Island, J. Atmos. Sol.-Terr. Phys., 68, 369–378, 2006.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Takahashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takahashi, H., Abdu, M.A., Wrasse, C.M. et al. Possible influence of ultra-fast Kelvin wave on the equatorial ionosphere evening uplifting. Earth Planet Sp 61, 455–462 (2009). https://doi.org/10.1186/BF03353162

Download citation

Key words

  • Equatorial ionosphere
  • mesosphere
  • planetary waves
  • Kelvin wave