Skip to main content

Global distribution of the thermospheric disturbances produced by effects from the upper and lower regions: simulations by a whole atmosphere GCM

Abstract

It is well-known that low-latitude ionospheric/thermospheric disturbances are sometimes generated in association with the passage of traveling ionospheric/atmospheric disturbances (TIDs/TADs) produced in the high-latitude region and that the low-latitude ionosphere/thermosphere should be strongly coupled with the lower atmosphere. These facts suggest that the appearance of thermospheric disturbances with complex structures in the low-latitude region are the result of a superposition of disturbances which have different origins. We have investigated the lower atmospheric effects on the morphology of the thermospheric disturbances in response to changes in the geomagnetic activity by using a whole atmosphere general circulation model (GCM). In order to suppress the lower atmospheric effects, we set the global mean temperature and zero-wind below about 80-km altitude in the GCM. The simulation results show that the lower atmospheric effects can produce latitudinal and longitudinal structures in the low-latitude thermosphere. These lower atmospheric effects also modulate the amplitudes and structures of TADs propagating from the high- to low-latitude regions. Our results suggest that the lower atmospheric effects can produce variability in the TIDs/TADs, which in turn would create conditions conducive to plasma instabilities in the low-latitude ionosphere.

References

  1. Aruliah, A. L. and E. Griffin, Evidence of meso-scale structure in the high-latitude thermosphere, Ann. Geophys., 19, 37–46, 2001.

    Article  Google Scholar 

  2. Balan, N., S. Kawamura, T. Nakamura, M. Yamamoto, S. Fukao, W. L. Oliver, M. E. Hagan, A. D. Aylward, and H. Alleyne, Simultaneous mesosphere-lower thermosphere and thermospheric F region observations using middle and upper atmosphere radar, J. Geophys. Res., 111, A10S17, doi:10.1029/2005JA011487, 2006.

    Article  Google Scholar 

  3. Balthazor, R. L. and R. J. Moffett, Morphology of large-scale traveling atmospheric disturbances in the polar thermosphere, J. Geophys. Res., 104, 15–24, 1999.

    Article  Google Scholar 

  4. Bruinsma, S. and J. M. Forbes, Global observation of traveling atmospheric disturbances (TADs) in the thermosphere, Geophys. Res. Lett., 34, L14103, doi:10.1029/2007GL030243, 2007.

    Article  Google Scholar 

  5. Bruinsma, S., J. M. Forbes, R. S. Nerem, and X. Zhang, Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data, J. Geophys. Res., 111, A06303, doi:10.1029/2005JA011284, 2006.

    Google Scholar 

  6. Chiu, Y. T., An improved phenomenological model of ionospheric density, J. Atmos. Terr. Phys., 37, 1563–1570, 1975.

    Article  Google Scholar 

  7. Colerico, M., M. Mendillo, D. Nottingham, J. Baumgardner, J. Meriwether, J. Mirick, B. W. Reinisch, J. L. Scali, C. G. Fesen, and M. A. Biondi, Coordinated measurements of F region dynamics related to the thermospheric midnight temperature maximum, J. Geophys. Res., 101, 26,783–26,793, 1996.

    Article  Google Scholar 

  8. Fujiwara, H. and Y. Miyoshi, Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model, Geophys. Res. Lett., 33, L20108, doi:10.1029/2006GL027103, 2006.

    Article  Google Scholar 

  9. Fujiwara, H., S. Maeda, H. Fukunishi, T. J. Fuller-Rowell, and D. S. Evans, Global variations of thermospheric winds and temperatures caused by substorm energy injection, J. Geophys. Res., 101, 225–239, 1996.

    Article  Google Scholar 

  10. Fukao, S., Recent advances in atmospheric radar study, J. Meteor. Soc. Jpn., 85B, 215–239, 2007.

    Article  Google Scholar 

  11. Fuller-Rowell, T. J. and D. S. Evans, Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data, J. Geophys. Res., 92, 7606–7618, 1987.

    Article  Google Scholar 

  12. Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL02616, 2006.

    Article  Google Scholar 

  13. Lühr, H., K. Häusler, and C. Stolle, Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides, Geophys. Res. Lett., 34, L16102, doi:10.1029/2007GL030639, 2007.

    Article  Google Scholar 

  14. Mendillo, M., H. Rishbeth, R. G. Roble, and J. Wroten, Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere, J. Atmos. Sol.-Terr. Phys., 64, 1911–1931, 2002.

    Article  Google Scholar 

  15. Millward, G. H., R. J. Moffett, and S. Quegan, Effects of an atmospheric gravity wave on the midlatitude ionospheric F layer, J. Geophys. Res., 98, 19,173–19,179, 1993.

    Article  Google Scholar 

  16. Miyahara, S., Y. Yoshida, and Y. Miyoshi, Dynamic coupling between the lower and upper atmosphere by tides and gravity waves, J. Atmos. Terr. Phys., 55, 1039–1053, 1993.

    Article  Google Scholar 

  17. Miyoshi, Y., Numerical simulation of the 5-day and 16-day waves in the mesopause region, Earth Planets Space, 51, 763–772, 1999.

    Article  Google Scholar 

  18. Miyoshi, Y. and H. Fujiwara, Day-to-day variations of migrating diurnal tide simulated by a GCM from the ground surface to the exobase, Geophys. Res. Lett., 30, 1789, doi:10.1029/2003GL017695, 2003.

    Article  Google Scholar 

  19. Miyoshi, Y. and H. Fujiwara, Excitation mechanism of intraseasonal oscillation in the equatorial mesosphere and lower thermosphere, J. Geophys. Res., 111, D14108, doi:10.1029/2005JD006993, 2006.

    Article  Google Scholar 

  20. Miyoshi, Y. and H. Fujiwara, Gravity waves in the thermosphere simulated by a general circulation model, J. Geophys. Res., 113, doi:10. 1029/2007JD008874, 2008.

  21. Miyoshi, Y. and H. Fujiwara, Gravity waves in the equatorial thermosphere and their relation to lower atmospheric variability, Earth Planets Space, 61, this issue, 471–478, 2009.

    Article  Google Scholar 

  22. Nicolls, M. J. and M. C. Kelley, Strong evidence for gravity wave seeding of an ionospheric plasma instability, Geophys. Res. Lett., 32, L05108, doi:10.1029/2004GL020737, 2005.

    Article  Google Scholar 

  23. Ogawa, T., Y. Otsuka, K. Shiokawa, A. Saito, and M. Nishioka, Ionospheric disturbances over Indonesia and their possible association with atmospheric gravity waves from the troposphere, J. Meteor. Soc. Jpn., CPEA Special Issue, 84A, 327–342, 2006.

    Article  Google Scholar 

  24. Roble, R. G. and E. C. Ridley, An auroral model for the NCAR thermospheric general circulation model (TGCM), Ann. Geophys., 54, 369–382, 1987.

    Google Scholar 

  25. Strickland, D. J., J. D. Craven, and R. E. Daniell, Jr., Six days thermospheric- ionospheric weather over the Northern Hemisphere in late September 1981, J. Geophys. Res., 106, 30,291–30,306

    Article  Google Scholar 

  26. Takahashi, H., L. M. Lima, C. M. Wrasse, M. A. Abdu, I. S. Batista, D. Gobbi, R. A. Buriti, and P. P. Batista, Evidence on 2–4 day oscillations of the equatorial ionosphere h′F and mesospheric airglow emissions, Geophys. Res. Lett., 32, L12102, doi:10.1029/2004GL022318, 2005.

    Article  Google Scholar 

  27. Volland, H., Models of the global electric fields within the magnetosphere, Ann. Geophys., 31, 159–173, 1975.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Fujiwara.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fujiwara, H., Miyoshi, Y. Global distribution of the thermospheric disturbances produced by effects from the upper and lower regions: simulations by a whole atmosphere GCM. Earth Planet Sp 61, 463–470 (2009). https://doi.org/10.1186/BF03353163

Download citation

Key words

  • Thermosphere
  • GCM
  • simulation
  • traveling atmospheric disturbances (TADs)
  • atmospheric coupling