Skip to main content

The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability

Abstract

Recent observations of the low-latitude F-region ionosphere at times near equinox have shown that it varies with a predominant zonal wavenumber-four pattern in a fixed local-time frame. It has been shown that this pattern corresponds well to the non-migrating diurnal eastward wavenumber-three atmospheric tide (DE3) at E-region altitudes simulated by the Global Scale Wave Model (GSWM). Here we present details of the morphology of the F-region ionosphere from TIMED GUVI with simultaneous observations of the non-migrating diurnal tides at E-region altitudes from TIMED SABER. For the case of equinox (March 2002), the correspondence of the SABER and GUVI observations confirms the relationship previously established using the GSWM simulations. There is also a wavenumber-one signature that is present which may be related to the semi-diurnal westward wavenumber-three, possibly in conjunction with changes in the magnetic field with longitude. During July 2002, when the amplitude of the DE3 maximizes, the amplitude of the wavenumber-four pattern in the F-region ionosphere intensifies. There is also evidence of a strong wavenumber-three pattern in the F-region ionosphere, which can be attributed to the strong diurnal eastward wavenumber-two tide during this period. During January 2003, the amplitude of all non-migrating components observed by SABER are either small or asymmetric and the ionosphere does not display either a wavenumber-three or -four pattern. During both solstice periods, a strong wavenumber-one is seen that is attributed to the offset of the subsolar point and the geomagnetic equator that maximizes at solstice, possibly in conjunction with other geomagnetic effects. During all seasons, significant hemispheric asymmetries in the airglow wavenumber spectra are seen. The combined GUVI and SABER observations presented here demonstrate that the large-scale periodic longitudinal structure of the F-region ionosphere responds significantly to changes in the forcing by non-migrating diurnal tides at E-region altitudes.

References

  1. Appleton, E., Two anomalies in the ionosphere, Nature, 157, 691, 1946.

    Article  Google Scholar 

  2. England, S. L., T. J. Immel, E. Sagawa, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton, Effect of atmospheric tides on the morphology of the quiet time, post-sunset equatorial ionospheric anomaly, J. Geophys. Res., 111, A10S19, doi:10.1029/2006JA011795, 2006a.

    Article  Google Scholar 

  3. England, S. L., S. Maus, T. J. Immel, and S. B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides, Geophys. Res. Lett., 33, doi:10.1029/2006GL027465, 2006b.

    Article  Google Scholar 

  4. England, S. L., T. J. Immel, and J. D. Huba, Modeling the longitudinal variation in the post-sunst far-ultraviolet OI airglow using the SAMI2 model, J. Geophys. Res., 113, A01309, doi:10.1029/2007JA012536, 2008.

    Google Scholar 

  5. Farley, D. T., E. Bonelli, B. G. Fejer, and M. F. Larsen, The prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res., 91, 13,723–13,728, 1986.

    Article  Google Scholar 

  6. Fejer, B. G., E. R. de Paula, S. A. Gonzalez, and R. F. Woodman, Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res., 96, 13,901–13,906, 1991.

    Article  Google Scholar 

  7. Forbes, J. M., J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C. J. Mertens, and M. E. Hagan, Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002, J. Geophys. Res., 111, A10S06, doi:10. 1029/2005JA011492, 2006.

    Google Scholar 

  8. Forbes, J. M., X. Zhang, S. Palo, J. Russell, C. J. Mertens, and M. Mlynczak, Tidal variability in the ionospheric dynamo region, J. Geophys. Res., 113, A02310, doi:10.1029/2007JA012737, 2008.

    Google Scholar 

  9. Hagan, M. E. and J. M. Forbes, Migrating and nomigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 108(A2), 1062, doi:10.1029/2002JA009466, 2003.

    Article  Google Scholar 

  10. Hagan, M., A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England, Connections between deep tropical clouds and the Earth’s ionosphere, Geophys. Res. Lett., 34, L20109, doi:10.1029/2007 GL030142, 2007.

    Article  Google Scholar 

  11. Hartman, W. A. and R. A. Heelis, Longitudinal variations in the equatorial vertical drift in the topside ionosphere, J. Geophys. Res., 112, A03305, doi:10.1029/2006JA011773, 2007.

    Google Scholar 

  12. Henderson, S. B., C. M. Swenson, J. H. Gunther, A. B. Christensen, and L. J. Paxton, Method for characterization of the equatorial anomaly using image subspace analysis of Global Ultraviolet Imager data, J. Geophys. Res., 110, A08308, doi:10.1029/2004JA010830, 2005a.

    Google Scholar 

  13. Henderson, S. B., C. M. Swenson, A. B. Christensen, and L. J. Paxton, Morphology of the equatorial anomaly and equatorial plasma bubbles using image subspace analysis of Global Ultraviolet Imager data, J. Geophys. Res., 110, A11306, doi:10.1029/2005JA011080, 2005b.

    Article  Google Scholar 

  14. Immel, T. J., S. B. Mende, H. U. Frey, L. M. Peticolas, and E. Sagawa, Determination of low latitude plasma drift speeds from FUV images, Geophys. Res. Lett., 30(18), 1945, doi:10.1029/2003GL017573, 2003.

    Article  Google Scholar 

  15. Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161, 2006.

    Article  Google Scholar 

  16. Jee, G., R. W. Schunk, and L. Scherliess, Analysis of TEC data from the TOPEX/Poseidon mission, J. Geophys. Res., 109, A01301, doi:10. 1029/2003JA010058, 2004.

    Google Scholar 

  17. Kil, H., S. J. Oh, M. C. Kelley, L. J. Paxton, S. L. England, E. Talaat, K. W. Min, and S. Y. Su, Longitudinal structure of the vertical E×B drift and ion density seen from ROCSAT-1, Geophys. Res. Lett., 34, L14110, doi:10.1029/2007GL030018, 2007.

    Article  Google Scholar 

  18. Lin, C. H., W. Wang, M. E. Hagan, C. C. Hsiao, T. J. Immel, M. L. Hsu, J. Y. Liu, L. J. Paxton, T. W. Fang, and C. H. Liu, Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Three-dimensional electron density structures, Geophys. Res. Lett., 34, L11112, doi:10.1029/2007GL029265, 2007.

    Article  Google Scholar 

  19. Meier, R. R., Ultraviolet spectroscopy and remote sensing of the upper atmosphere, Space Sci. Rev., 58, 1–185, 1991.

    Article  Google Scholar 

  20. Namba, S. and K. I. Maeda, Radio Wave Propagation, p. 86, Corona Publishing, Tokyo, 1939.

    Google Scholar 

  21. Richmond, A. D. and R. G. Roble, Electrodynamic effects of thermospheric winds from the NCAR thermospheric general circulation model, J. Geophys. Res., 92, 12365–12376, 1987.

    Article  Google Scholar 

  22. Rishbeth, H., The F-layer dynamo, Planet. Space Sci., 19, 263–267, doi:10.1016/0032-0633(71)90205-4, 1971.

    Article  Google Scholar 

  23. Sagawa, E., T. J. Immel, H. U. Frey, and S. B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV, J. Geophys. Res., 110, A11302, doi:10. 1029/2004JA010848, 2005.

    Article  Google Scholar 

  24. Scherliess, L. and B. G. Fejer, Radar and satellite global equatorial F region vertical drift model, J. Geophys. Res., 104, 6829–6842, doi:10. 1029/1999JA900025, 1999.

    Article  Google Scholar 

  25. Scherliess, L., D. C. Thompson, and R. W. Schunk, Longitudinal variaibility of low-latitude total electron content: Tidal influences, J. Geophys. Res., 113, A01311, doi:10.1029/2007JA012480, 2008.

    Google Scholar 

  26. Tarpley, J. D., The ionospheric wind dynamo-II. Solar tides, Planet. Space Sci., 18, 1091–1103, 1970.

    Article  Google Scholar 

  27. Thuillier, G., J. W. King, and A. J. Slater, An explanation of the longitudinal variation of the O1D (630 nm) tropical nightglow intensity, J. Atmos. Terr. Phys., 38, 155–158, 1976.

    Article  Google Scholar 

  28. Thuillier, G., R. H. Wiens, G. G. Shepherd, and R. G. Roble, Photochemistry and dynamics in thermospheric intertropical arcs measured by the WIND Imaging Interferometer on board UARS: A comparison with TIE-GCM simulations, J. Atmos. Terr. Phys., 64, 405–415, 2002.

    Article  Google Scholar 

  29. VanZandt, T. E., W. L. Clark, and J. M. Warnock, Magnetic apex coordinates: a magnetic coordinate system for the ionospheric F2 layer, J. Geophys. Res., 77(13), 2406–2411, 1972.

    Article  Google Scholar 

  30. Walker, G. O., Longitudinal structure of the F-region equatorial anomaly—a review, J. Atmos. Terr. Phys., 43, 763–774, 1981.

    Article  Google Scholar 

  31. Woodman, R., Vertical drift velocities and east-west electric fields at the magnetic equator, J. Geophys. Res., 75, 6249–6259, 1970.

    Article  Google Scholar 

  32. Zhang, X., J. M. Forbes, M. E. Hagan, J. M. Russell, S. E. Palo, C. J. Mertens, and M. G. Mlynczak, Monthly tidal temperatures 20–120 km from TIMED/SABER, J. Geophys. Res., 111, A10S08, doi:10.1029/2005JA011504, 2006.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott L. England.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

England, S.L., Zhang, X., Immel, T.J. et al. The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability. Earth Planet Sp 61, 493–503 (2009). https://doi.org/10.1186/BF03353166

Download citation

Key words

  • Equatorial ionosphere
  • atmospheric tides
  • equatorial ionization anomaly