Skip to main content

Upward propagating tidal effects across the E- and F-regions of the ionosphere

Abstract

Recent far-ultraviolet (FUV) observations of Earth have shown the remarkable spatial correspondence between the amplitude of non-migrating atmospheric tides originating in the troposphere and the density and morphology of the nighttime equatorial ionospheric anomaly (EIA). This is likely a result of the modulation of the E-region dynamo electric field in daytime by the tidal winds. FUV observations around the time of the vernal equinox of 2002 show that the signature of tidal influence, the wave-4 periodicity in the separation and density of the two EIA bands, itself exhibits significant temporal variability. Here, we seek to understand this variability, and whether (or not) it is linked to variations in the strength of the upward-propagating tides. This study relies on tidal measurements provided by the global observations from the TIMED-SABER instrument that measures the temperature variations in the MLT associated with the upward-propagating tides. TIMED-GUVI provides F-region density measurements concurrent to the MLT temperature retrievals. It is found that the atmospheric and ionospheric zonal wave-4 signatures very nearly covary over a 30-day period, strongly supporting the theory that the influence of the the diurnal eastward 3 (DE3) tide originating in the troposphere extends to the F-layer of the ionosphere. Additionally, a 6-day periodicity in the power of the ionospheric wave-4 signature is found that may originate with the tide’s interaction with longer period planetary waves.

References

  1. Bernhardt, P. A., D. A. Antoniadis, and A. V. da Rosa, Lunar perturbations in columnar electron content and their interpretation in terms of dynamo electrostatic fields, J. Geophys. Res., 81, 5957–5963, 1976.

    Article  Google Scholar 

  2. Canziani, P. O., A. E. Giraldez, and H. Teitelbaum, Thermospheric meridional wind tides above Argentina during 1984, Ann. Geophys., 8, 549–557, 1990.

    Google Scholar 

  3. Christensen, A. B., et al., Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission, J. Geophys. Res., 108, 1451, doi:10.1029/2003JA009918, 2003.

    Article  Google Scholar 

  4. Colerico, M., et al., Coordinated measurements of F region dynamics related to the thermospheric midnight temperature maximum, J. Geophys. Res., 101, 26,783–26,794, doi:10.1029/96JA02337, 1996.

    Article  Google Scholar 

  5. England, S. L., T. J. Immel, E. Sagawa, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton, Effect of atmospheric tides on the morphology of the quiet time, post-sunset equatorial ionospheric anomaly, J. Geophys. Res., 111, A10S19, doi:10.1029/2006JA011795, 2006a.

    Article  Google Scholar 

  6. England, S. L., S. Maus, T. J. Immel, and S. B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides, Geophys. Res. Lett., 33, L21105, doi:10.1029/2006GL027465, 2006b.

    Article  Google Scholar 

  7. England, S. L., T. J. Immel, and J. D. Huba, Modeling the longitudinal variation in the post-sunset far-ultraviolet OI airglow using the SAMI2 model, J. Geophys. Res., 111, A10S19, doi:10.1029/2006JA011795, 2007.

    Google Scholar 

  8. England, S. L., X. Zhang, T. J. Immel, J. M. Forbes, and R. DeMajistre, The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability, Earth Planets Space, 61, this issue, 493–503, 2009.

    Article  Google Scholar 

  9. Evans, J. V., A note on lunar tides in the ionosphere, J. Geophys. Res., 83, 1647–1652, 1978.

    Article  Google Scholar 

  10. Fejer, B. F., D. T. Farley, R. F. Woodman, and C. Calderon, Dependence of equatorial F region vertical drifts on season and solar cycle, J. Geophys. Res., 84, 5792–5796, 1979.

    Article  Google Scholar 

  11. Fejer, B. G., The electrodynamics of the low-latitude ionosphere: recent results and future challenges, J. Atmos. Sol.-Terr. Phys., 59, 1465–1482, 1997.

    Article  Google Scholar 

  12. Forbes, J. M. and R. S. Lindzen, Atmospheric solar tides and their electrodynamic effects. I—The global Sq current system. II—The equatorial electrojet, J. Atmos. Terr. Phys., 38, 897–920, 1976.

    Article  Google Scholar 

  13. Forbes, J. M. and D. Wu, Solar Tides as Revealed by Measurements of Mesosphere Temperature by the MLS Experiment on UARS, J. Atmos. Sci., 63, 1776–1797, 2006.

    Article  Google Scholar 

  14. Forbes, J. M., S. E. Palo, and X. Zhang, Variability of the ionosphere, J. Geophys. Res., 62, 685–693, 2000.

    Google Scholar 

  15. Forbes, J. M., J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C. J. Mertens, and M. E. Hagan, Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002, J. Geophys. Res., 111, A10S06, doi:10.1029/2005JA011492, 2006.

    Google Scholar 

  16. Forbes, J. M., X. Zhang, S. Palo, J. Russell, C. J. Mertens, and M. Mlynczak, Tidal variability in the ionospheric dynamo region, J. Geophys. Res., 113, A02310, doi:10.1029/2007JA012737, 2008.

    Google Scholar 

  17. Hagan, M. E. and J. M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res. (Atmos.), 107, 4754, doi:10.1029/2001JD001236, 2002.

    Article  Google Scholar 

  18. Hagan, M. E. and J. M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 108, 1062, doi:10.1029/2002JA009466, 2003.

    Article  Google Scholar 

  19. Hagan, M. E., A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England, The effects of deep tropical clouds on the earth’s ionosphere as simulated with ncar time-gcm, Geophys. Res. Lett., 34, L20109, doi:10.1029/2007GL030142, 2007.

    Article  Google Scholar 

  20. Heelis, R. A., Electrodynamics in the low and middle latitude ionosphere: a tutorial, J. Atmos. Terr. Phys., 66, 825–838, doi:10.1016/j.jastp.2004. 01.034, 2004.

    Article  Google Scholar 

  21. Huba, J. D., G. Joyce, and J. A. Fedder, Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 105, 23,035–23,053, 2000.

    Article  Google Scholar 

  22. Immel, T. J., J. C. Foster, A. J. Coster, S. B. Mende, and H. U. Frey, Global storm time plasma redistribution imaged from the ground and space, Geophys. Res. Lett., 32, L03107, doi:10.1029/2004GL021120, 2005.

    Google Scholar 

  23. Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton, The control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161, 2006.

    Article  Google Scholar 

  24. Jadhav, G., M. Rajaram, and R. Rajaram, A detailed study of equatorial electrojet phenomenon using Ørsted satellite observations, J. Geophys. Res., 107, 1175, doi:10.1029/2001JA000183, 2002.

    Article  Google Scholar 

  25. Kil, H., S.-J. Oh, M. C. Kelley, L. J. Paxton, S. L. England, E. Talaat, K.-W. Min, and S.-Y. Su, Longitudinal structure of the vertical E×B drift and ion density seen from ROCSAT-1, Geophys. Res. Lett., 34, L14110, doi:10.1029/2007GL030018, 2007.

    Article  Google Scholar 

  26. Lieberman, R. S., D. M. Riggin, D. A. Ortland, S. W. Nesbitt, and R. A. Vincent, Variability of mesospheric diurnal tides and tropospheric diurnal heating during 1997–1998, J. Geophys. Res., 112, D20110, doi:10.1029/2007JD008578, 2007.

    Article  Google Scholar 

  27. Lin, C. H., et al., Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Three-dimensional electron density structures, Geophys. Res. Lett., 34, L11112, doi:10.1029/2007GL029265, 2007.

    Article  Google Scholar 

  28. Meyer, C. K. and J. M. Forbes, A 6.5-day westward propagating planetary wave: Origin and characteristics, J. Geophys. Res., 102, 26,173–26,178, doi:10.1029/97JD01464, 1997.

    Article  Google Scholar 

  29. Pancheva, D. V. et al., Two-day wave coupling of the low-latitude atmosphere-ionosphere system, J. Geophys. Res., 111, A07313, doi:10. 1029/2005JA011562, 2006.

    Google Scholar 

  30. Richmond, A. D., Ionospheric electrodynamics using magnetic apex coordinates, J. Geomag. Geoelectr., 47, 191–212, 1995.

    Article  Google Scholar 

  31. Richmond, A. D., C. Peymirat, and R. G. Roble, Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model, J. Geophys. Res., 108, 1118, doi:10.1029/2002JA009758, 2003.

    Article  Google Scholar 

  32. Russell, J. M., M. G. Mlynczak, L. L. Gordley, J. J. Tansock, and R. W. Esplin, Overview of the SABER experiment and preliminary calibration results, in Proc. SPIE Vol. 3756, p. 277–288, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, edited by A. M. Larar, vol. 3756 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, 277–288, 1999.

    Google Scholar 

  33. Sagawa, E., T. J. Immel, H. U. Frey, and S. B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV, J. Geophys. Res., 110, A11302, 2005.

    Article  Google Scholar 

  34. Talaat, E. R., J.-H. Yee, and X. Zhu, Observations of the 6.5-day wave in the mesosphere and lower thermosphere, J. Geophys. Res., 106, 20,715–20,724, doi:10.1029/2001JD900227, 2001.

    Article  Google Scholar 

  35. Talaat, E. R., J.-H. Yee, and X. Zhu, The 6.5-day wave in the tropical stratosphere and mesosphere, J. Geophys. Res. (Atmos.), 107, 4133, doi:10.1029/2001JD000822, 2002.

    Article  Google Scholar 

  36. Thuillier, G., R. H. Wiens, G. G. Shepherd, and R. G. Roble, Photochemistry and dynamics in thermospheric intertropical arcs measured by the WIND Imaging Interferometer on board UARS: A comparison with TIE-GCM simulations, J. Atmos. Sol.-Terr. Phys., 64, 405–415, 2002.

    Article  Google Scholar 

  37. Volland, H., Coupling between the neutral tidal wind and the ionospheric dynamo current, J. Geophys. Res., 81, 1621–1628, 1976.

    Article  Google Scholar 

  38. Zhang, X., J. M. Forbes, M. E. Hagan, J. M. Russell, S. E. Palo, C. J. Mertens, and M. G. Mlynczak, Monthly tidal temperatures 20–120 km from TIMED/SABER, J. Geophys. Res., 111, A10S08, doi:10.1029/2005JA011504, 2006.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Immel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Immel, T.J., England, S.L., Zhang, X. et al. Upward propagating tidal effects across the E- and F-regions of the ionosphere. Earth Planet Sp 61, 505–512 (2009). https://doi.org/10.1186/BF03353167

Download citation

Key words

  • Atmospheric tides
  • tides and planetary waves
  • FUV
  • airglow
  • equatorial ionosphere
  • thermospheric dynamics