Skip to main content

Reflection and refraction of acoustic waves at poroelastic ocean bed

Abstract

Ocean bottom is considered as a plane interface between non-viscous liquid and anisotropic dissipative poroelastic solid. The dissipation comes from the viscosity of pore-fluid as well as the anelasticity of the porous frame. Biot’s theory is used to derive a system of modified Christoffel equations for the propagation of plane harmonic waves in a porous medium. The non-trivial solution of this system is ensured by a determinantal equation. This equation is solved into a polynomial equation of degree eight, whose roots represent the vertical slowness values for the waves propagating upward and downward in a porous medium. The eight, numerically obtained, slowness values are identified with the four waves propagating towards (or away from) the boundary in the porous medium. Incidence of acoustic wave through the liquid at the interface results in its reflection and the refraction of four attenuating waves in the poroelastic medium. The energy partition among the reflected and refracted waves is calculated at the interface. Conservation of energy is obtained except in the case of partially opened surface pores of the porous medium. Energy refracted to the dissipative porous medium is expressed through an energy matrix. The four diagonal elements of this matrix represent the energy shares of the four inhomogeneous waves and the sum of all the off-diagonal elements of this matrix represents the interaction energy. Few significant results are extracted from the observations in the numerical examples studied. These results represent the effect of anisotropic symmetries, anelasticity, wave-frequency, opening, configuration and flow-impedance of pores, on the energy shares of reflected and refracted waves.

References

  1. Ainslie, M. A. and P. W. Burns, Energy-conserving reflection and transmission coefficients for a solid-solid boundary, J. Acoust. Soc. Am., 98, 2836–2840, 1995.

    Article  Google Scholar 

  2. Albert, D. G., A comparison between wave propagation in water-saturated and air-saturated porous materials, J. Appl. Phys., 73, 28–36, 1993.

    Article  Google Scholar 

  3. Badiey, M., L. Jaya, and A. H.-D. Cheng, Propagator matrix for plane wave reflection from inhomogeneous anisotropic poroelastic seafloor, J. Comput. Acoust., 2, 11–27, 1994.

    Article  Google Scholar 

  4. Biot, M. A., The theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low-frequency range, II. Higher frequency range, J. Acoust. Soc. Am., 28, 168–191, 1956.

    Article  Google Scholar 

  5. Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 1482–1498, 1962a.

    Article  Google Scholar 

  6. Biot, M. A., Generalized theory of acoustic propagation in porous dissipative media, J. Acoust. Soc. Am., 34, 1254–1264, 1962b.

    Article  Google Scholar 

  7. Borcherdt, R. D., Reflection and refraction of type-II S waves in elastic and inelastic media, Bull. Seism. Soc. Am., 67, 43–67, 1977.

    Google Scholar 

  8. Buckingham, M. J., Theory of acoustic attenuation, dispersion and pulse propagation in unconsolidated granular materials including marine sediments, J. Acoust. Soc. Am., 102, 2579–2596, 1997.

    Article  Google Scholar 

  9. Buckingham, M. J., Theory of compressional and shear waves in fluid like marine sediments, J. Acoust. Soc. Am., 103, 288–299, 1998.

    Article  Google Scholar 

  10. Buckingham, M. J., Theory of compressional and transverse wave propagation in consolidated porous media, J. Acoust. Soc. Am., 106, 575–587, 1999.

    Article  Google Scholar 

  11. Buckingham, M. J., Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments, J. Acoust. Soc. Am., 108, 2796–2815, 2000.

    Article  Google Scholar 

  12. Carcione, J. M., Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media, Pergamon, Amsterdam, 2001.

    Google Scholar 

  13. Chotiras, N. P., D. E. Smith, and J. N. Piper, Refraction and scattering into a sandy ocean sediment in 30–40 kHz band, IEEE J. Oceanic Engng. 27, 362–375, 2007.

    Article  Google Scholar 

  14. Collins, M. D., J. F. Lingevitch, and W. L. Siegmann, Wave propagation in poro-acoustic media, Wave Motion, 25, 265–272, 1997.

    Article  Google Scholar 

  15. Crampin, S., Suggestions for a consistent terminology for seismic anisotropy, Geophys. Prospect., 37, 753–770, 1989.

    Article  Google Scholar 

  16. Crampin, S., The fracture criticality of crustal rocks, Geophys. J. Int., 118, 428–438, 1994.

    Article  Google Scholar 

  17. de la Cruz, V., J. Hube, and T. J. T. Spanos, Reflection and transmission of seismic waves at the boundaries of porous media, Wave Motion, 16, 323–338, 1992.

    Article  Google Scholar 

  18. Denneman, A. I. M., G. G. Drijkoningen, D. M. J. Smeulders, and K. Wapenar, Reflection and transmission of waves at a fluid/porous medium interface, Geophys., 67, 282–291, 2002.

    Article  Google Scholar 

  19. Deresiewicz, H. and R. Skalak, On uniqueness in dynamic Poroelasticity, Bull. Seismol. Soc. Am., 53, 793–799, 1963.

    Google Scholar 

  20. Gurevich, B., Elastic properties of saturated porous rocks with aligned fractures, J. Appl. Geophys., 54, 203–218, 2003.

    Article  Google Scholar 

  21. Johnson, D. L., J. Koplik, and R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., 176, 379–402, 1987.

    Article  Google Scholar 

  22. Kohler, W. E., A one-dimensional randomly stratified model of ocean sediments, Wave Motion, 10, 421–441, 1988.

    Article  Google Scholar 

  23. Kuo, E. Y. T., Acoustic wave scattering from two solid boundaries at the ocean bottom: Reflection loss, IEEE J. Oceanic Eng., 17, 159–170, 1992.

    Article  Google Scholar 

  24. Lin, C.-H., V. M. Lee, and M. D. Trifunac, The reflection of plane waves in a poroelastic half-space saturated with inviscid fluid, Soil Dyn. Earthquake, 25, 206–223, 2006.

    Google Scholar 

  25. Liu, J. Y., C. F. Huang, and S. W. Shyue, Effect of seabed properties on acoustic wave fields in a seismo-acoustic ocean waveguide, Ocean Eng., 28, 1437–1459, 2001.

    Article  Google Scholar 

  26. Potel, C. and F. J. de Belleval, Propagation in an anisotropic periodically multilayered medium, J. Acoust. Soc. Am., 93, 2669–2677, 1993.

    Article  Google Scholar 

  27. Rasolofosaon, P. N. J. and B. E. Zinszner, Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks, Geophys., 67, 230–240, 2002.

    Article  Google Scholar 

  28. Schmitt, D. P., Acoustic multipole logging in transversely isotropic poroelastic formations, J. Acoust. Soc. Am., 86, 2397–2421, 1989.

    Article  Google Scholar 

  29. Sharma, M. D., Three-dimensional wave propagation in a general anisotropic poroelastic medium: phase velocity, group velocity and polarisation, Geophys. J. Int., 156, 329–344, 2004a.

    Article  Google Scholar 

  30. Sharma, M. D., 3-D wave propagation in a general anisotropic poroelastic medium: reflection and refraction at an interface with fluid, Geophys. J. Int., 157, 947–958, 2004b.

    Article  Google Scholar 

  31. Sharma, M. D., Propagation of inhomogeneous plane waves in dissipative anisotropic poroelastic solids, Geophys. J. Int., 163, 981–990, 2005.

    Article  Google Scholar 

  32. Sharma, M. D., Propagation of harmonic plane waves in a general anisotropic porous solid, Geophys. J. Int., 2007 (in press).

    Google Scholar 

  33. Sharma, M. D. and M. L. Gogna, Wave propagation in anisotropic liquid-saturated porous solids, J. Acoust. Soc. Am., 89, 1068–1073, 1991.

    Article  Google Scholar 

  34. Stoll, R. D., Acoustic waves in saturated sediment, in Physics of sound in Marine Sediments, edited by L. Hampton, 19–39, Plenum, New York, 1974.

    Google Scholar 

  35. Stoll, R. D., Acoustic waves in Ocean sediments, Geophys., 42, 715–725, 1977.

    Article  Google Scholar 

  36. Stoll, R. D., Experimental studies of attenuation in sediments, J. Acoust. Soc. Am., 66, 1152–1160, 1979.

    Article  Google Scholar 

  37. Stoll, R. D., Theoretical aspects of sound transmissions in sediments, J. Acoust. Soc. Am., 68, 1341–1350, 1980.

    Article  Google Scholar 

  38. Stoll, R. D. and G. M. Bryan, Wave attenuation in saturated sediments, J. Acoust. Soc. Am., 47, 1440–1447, 1970.

    Article  Google Scholar 

  39. Stoll, R. D. and T.-K. Kan, Reflection of acoustic waves at a water-sediment interface, J. Acoust. Soc. Am., 70, 149–156, 1981.

    Article  Google Scholar 

  40. Vashishth, A. K. and P. Khurana, Rayleigh modes in anisotropic, heterogeneous poroelastic layers, J. Seismol., 9, 431–448, 2005.

    Article  Google Scholar 

  41. Yang, J., Importance of flow condition on seismic waves at a saturated porous solid boundary, J. Sound Vib., 221, 391–413, 1999.

    Article  Google Scholar 

  42. Yamamoto, T., Acoustic propagation in the ocean with a poro-elastic bottom, J. Acoust. Soc. Am., 73, 1587–1596, 1983.

    Article  Google Scholar 

  43. Yamamoto, T., Acoustic scattering in the ocean from velocity and density fluctuations in the sediments, J. Acoust. Soc. Am., 99, 866–879, 1996.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Vashishth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vashishth, A.K., Sharma, M.D. Reflection and refraction of acoustic waves at poroelastic ocean bed. Earth Planet Sp 61, 675–687 (2009). https://doi.org/10.1186/BF03353176

Download citation

Key words

  • Poroelasticity
  • anisotropy
  • ocean-bottom
  • reflection
  • refraction
  • acoustic