Skip to main content


We’d like to understand how you use our websites in order to improve them. Register your interest.

Remanence anisotropy effect on the palaeointensity results obtained from various archaeological materials, excluding pottery


The effect of magnetic anisotropy on the palaeointensity results has been evaluated in different materials, including samples from archaeological structures of various ages, such as baked clay from prehistoric domestic ovens or pottery kilns, burnt soil from ancient fires, and bricks and bricks or tiles used in the kiln’s construction. The remanence anisotropy was estimated by the thermoremanent (TRM) anisotropy tensor and isothermal remanence (IRM) tensor methods. The small anisotropy effect (less than 5%) observed in the palaeointensity results of baked clay from the relatively thin prehistoric oven’s floors estimated previously through IRM anisotropy was confirmed by TRM anisotropy of this material. The new results demonstrate the possibility of using IRM anisotropy evaluation to correct baked clay palaeointensity data instead of the more difficult to determine TRM anisotropy ellipsoid. This is not always the case for the palaeointensity results from bricks and tiles. The anisotropy correction to palaeointensity results seems negligible for materials other than pottery. It would therefore appear that the palaeointensity determination is more sensitive to the degree of remanence anisotropy P and the angle between the natural remanent magnetization (NRM) vector and the laboratory field direction, than to the angle between the NRM and the maximum axis of the remanence anisotropy ellipsoid (Kmax).


  1. Aitken, M. J., P. A. Alcock, G. D. Bussel, and C. J. Shaw, Archaeomagnetic determination of the past geomagnetic intensity using ancient ceramics: allowance for anisotropy, Archaeometry, 23(1), 53–64, 1981.

  2. Bowles, J., J. Gee, J. Hildebrand, and L. Tauxe, Archaeomagnetic intensity results from California and Ecuador: evaluation of regional data, Earth Planet. Sci. Lett., 203, 967–981, 2002.

  3. Carvallo, C. and D. J. Dunlop, Archeomagnetism of potsherds from Grand Banks, Ontario: a test of low paleointensities in Ontario around A.D. 1000, Earth Planet. Sci. Lett., 186, 437–450, 2001.

  4. Coe, R. S., S. Gromme, and E. A. Mankinen, Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low, J. Geophys. Res., 83, 1740–1756, 1978.

  5. Chauvin, A., P. Y. Gillot, and N. Bonhommet, Palaeointensity of the Earth’s magnetic Field, recorded by two Late Quaternary sequences at the Island of La Reunion (Indian Ocean), J. Geophys. Res., 96(B2), 1981–2006, 1991.

  6. Chauvin, A., Y. Garcia, Ph. Lanos, and F. Laubenhaimer, Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France, Phys. Earth Planet. Inter., 120, 111–136, 2000.

  7. Daly, L. and H. Zinsser, Etude comparative des anisotropies de susceptibilite et d’aimentation remanente isotherme. Consequences pour l’analyse structurale et le paleomagnetisme, Ann. Geophys., 29, 189–200, 1973.

  8. Garcia, Y., Variation de l’intensite du champ magnetique en France durant les deux derniers millenaires, PhD Thesis, University of Rennes 1, 1996.

  9. Genevey, A. and Y. Gallet, Intensity of the geomagnetic field in Western Europe over the past 2000 years: New data from ancient French pottery, J. Geophys. Res., 107(B11), 2285, doi: 10.1029/2001 JB000701, 2002.

  10. Genevey, A., Y. Gallet, and J.-Cl. Margeueron, Eigth thousand years of geomagnetic field intensity variations in the eastern Mediterranean, J. Geophys. Res., 108(B5), 2228, doi: 10.1029/2001 JB001612, 2003.

  11. Gomez-Paccard, M., A. Chauvin, Ph. Lanos, J. Thiriot, and P. Jimenez-Castillo, Archeomagnetic study of seven contemporaneous kilns from Murcia (Spain), Phys. Earth Planet. Inter., 157, 16–32, doi:10.1016/j.pepi.2006.03.001, 2006.

  12. Goulpeau, L., Ph. Lanos, and L. Langouet, The anisotropy as a disturbance of the archaeomagnetic dating method, in Proc. 25th Int. Symposium of Archaeometry, 54–58, Elsevier, 1989.

  13. Gram-Jensen, M., N. Abrahamsen, and A. Chauvin, Archaeomagnetic Intensity in Denmark, Phys. Chem. Earth (A), 25(5), 525–531, 2000.

  14. Henry, B., D. Jordanova, N. Jordanova, Ch. Souque, and Ph. Robion, Anisotropy of magnetic susceptibility of heated rocks, Tectonophysics, 366, 241–258, 2003.

  15. Hrouda, F., Magnetic anisotropy of rocks and its application in geology and geophysics, Geophys. Surv., 5, 37–82, 1982.

  16. Hus, J., Anisotropy of TRM, in Abstracts book of the 2nd meeting of AARCH (Archaeomagnetism Applied for Rescue Cultural Heritages), Leoben, September, 2001.

  17. Hus, J., S. Ech-Chakrouni, and D. Jordanova, Origin of magnetic fabric in bricks: its implications in archaeomagnetism, Phys. Chem. Earth, 27(25–31), 1319–1331,2002.

  18. Jelinek, V., Characterisation of the magnetic fabric of rocks, Tectonophysics, 79, 63–67, 1981.

  19. Jordanova, N., Rock magnetic studies in archaeomagnetism and their contribution to the problem of reliable determination of the ancient geomagnetic field intensity, PhD Thesis, Sofia, 1996 (in Bulgarian).

  20. Jordanova, N., V. Karloukovski, and V. Spataras, Magnetic anisotropy studies on Greek pottery and bricks, Bulg. Geophys. J., 21(4), 49–58, 1995.

  21. Jordanova, N., E. Petrovsky, and M. Kovacheva, Preliminary rock magnetic study of archaeomagnetic samples from Bulgarian prehistoric sites, J. Geomag. Geoelectr., 49, 543–566, 1997.

  22. Jordanova, N., M. Kovacheva, I. Hedley, and M. Kostadinova, On the suitability of baked clay for archaeomagnetic studies as deduced from detailed rock-magnetic studies, Geophys. J. Int., 153, 146–158, 2003.

  23. Kovacheva, M., N. Jordanova, and V. Karloukovski, Geomagnetic field variations as determined from Bulgarian Archaeomagnetic Data. Part II: The Last 8000 Years, Surv. Geophys., 19, 431–460, 1998.

  24. Lanos, Ph., The effect of demagnetising field on thermoremanent magnetization acquired by parallel-sided baked clay blocks, Geophys. J. R. Astron. Soc., 91, 985–1012, 1987a.

  25. Lanos, Ph., Archéomagnétisme des materiaux déplacés, applications à la datation des des matériaux de construction d’argile cuite en archéologie, The`se de Doctorat, Université de Rennes 1, Rennes, 1987b.

  26. Le Goff, M. and Y. Gallet, A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations, Earth Planet. Sci. Lett., 229, 31–43, 2004.

  27. Leino, M. A. H. and L. J. Pesonen, Archaeomagnetic intensity in Finland—the last 6400 years, Open File Report Q19/22.0/1994/1, 1994.

  28. Marton, P., Archaeomagnetic directions: the Hungarian calibration curve, in Palaeomagnetism and Tectonics of the Mediterranean Region, edited by A. Morris and D. Tarling, 385–399, Geological Soc., Special Publication No 105, 1996.

  29. Nagata, T., Y. Arai, and K. Momose, Secular variation of the Geomagnetic Total Force during the Last 5000 Years, J. Geophys. Res., 68(18), 5277–5281, 1963.

  30. Odah, H., A. G. Hussain, V. Hoffmann, H. C. Soffel, M. El-Gamili, and H. Deebes, Effect of magnetic anisotropy on the experimentally determined palaeointensity of the geomagnetic field, Earth Planets Space, 53, 363–371, 2001.

  31. Rogers, J., J. M. W. Fox, and M. J. Aitken, Magnetic anisotropy in ancient pottery, Nature, 277(5698), 644–646, 1979.

  32. Selkin, P. A., J. S. Gee, L. Tauxe, W. P. Meurer, and A. J. Newell, The effect of remanence anisotropy on paleointensity estimates: a case from Archean Stillwater Complex, Earth Planet. Sci. Lett., 183, 403–416, 2000.

  33. Stephenson, A., S. Sadikun, and D. K. Porter, A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals, Geophys. J. R. Astron. Soc., 84, 185–200, 1986.

  34. Tarling, D. H. and F. Hrouda, The magnetic anisotropy of Rocks, Chapman and Hall, 1993.

  35. Thellier, E. and O. Thellier, Sur l’intensite du shamp magnetique terrestre dans le passe historique et geologique, Ann. Géophys., 15, 285–376, 1959.

  36. Veitch, R. J., I. G. Hedley, and J. J. Wagner, An investigation of the intensity of the geomagnetic field during roman times using magnetically anisotropic bricks and tiles, Arch. Sci. Geneve, 37, Fasc. 3, 359–373, 1984.

  37. Yang, S., J. Shaw, and T. Rolph, Archaeomagnetic studies of Peruvian pottery—from 1200 BC to 1800 AD, J. Geomag. Geoelectr., 45, 1193–1207, 1993a.

  38. Yang, S., J. Shaw, and Q. Wei, A comparison of archaeointensity results from Chinese ceramics using Thellier’s and Shaw’s palaeointensity methods, Geophys. J. Int., 113, 499–508, 1993b.

  39. Yu, Y. and D. Dunlop, Archaeomagnetism of Ontario potsherds from the last 2000 years, J. Geophys. Res., 105(B8), 19419–19433, 2000.

  40. Yu, Y., D. Dunlop, L. Pavlish, and M. Cooper, Paleointensity determination on the Late Precambrian Tudor Gabbro, Ontario, J. Geophys. Res., 106(B11), 26331–26343, 2001.

Download references

Author information



Corresponding author

Correspondence to Mary Kovacheva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kovacheva, M., Chauvin, A., Jordanova, N. et al. Remanence anisotropy effect on the palaeointensity results obtained from various archaeological materials, excluding pottery. Earth Planet Sp 61, 711–732 (2009).

Download citation

Key words

  • Archaeomagnetism
  • baked clay materials
  • palaeointensity
  • magnetic anisotropy correction