Skip to main content


Multi-year temperature measurements of the middle atmosphere at Chatanika, Alaska (65°N, 147°W)

Article metrics

  • 244 Accesses

  • 7 Citations


Over an eight-year period (1997–2005) Rayleigh lidar temperature measurements of the stratosphere and mesosphere (40–80 km) have been made at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). The Rayleigh lidar measurements have been made between mid-August and mid-May. These measurements have yielded a total of approximately 904 hours of temperature measurements of the middle atmosphere over 116 nights. The seasonal evolution of the middle atmosphere shows an annual cycle with maximum in summer below 60 km and a reversal of the cycle with minimum in summer above 60 km. The monthly mean stratopause has a highest temperature of 273 K at an altitude of 47.5 km in May and a lowest temperature of 243 K at an altitude of 54.7 km in January. However, nightly stratopause temperatures in January and December are sometimes warmer than those in May and August. An elevated stratopause (>65 km) is observed on 5 occasions in 41 observations in January and February. The Chatanika measurements are compared with five other Arctic data sets and models. The upper stratosphere at this site is slightly colder than the zonal mean as well as sites in Greenland and Scandinavia with the largest differences found in January. We discuss the wintertime temperatures in the upper stratosphere and lower mesosphere in terms of the position of the polar vortex and the increased occurrence of stratospheric warming events during the 1997–2005 observation period.


  1. Allen, D. R., R. M. Bevilacqua, G. E. Nedoluha, C. E. Randall, and G. L. Manney, Unusual stratospheric transport and mixing during the 2002 Antarctic winter, Geophys. Res. Lett., 30(12), 1599, doi:10.1029/2003GL017117, 2003.

  2. Andrews, D. G., J. R. Holton, and C. B. Leovy, Middle atmosphere dynamics, 489 pp., Academic Press Inc., New York, 1987.

  3. Baldwin, M. P. and T. J. Dunkerton, Propagation of Arctic oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104(D24), 30937–30946, 1999.

  4. Baldwin, M. P., M. Dameris, and T. G. Shepherd, How will the stratosphere affect climate change, Science, 316, 1576–1577, 2007.

  5. Beaumont, K., SABER: Sounding of the atmosphere using broadband emission radiometry,, accessed June, 2007.

  6. Boville, B. A., The influence of the polar night jet on the tropospheric circulation in a GCM, J. Atmos. Sci., 41(7), 1132–1142, 1984.

  7. Clancy, R. T., D. W. Rusch, and M. T. Callan, Temperature minima in the average thermal structure of the middle mesosphere (70–80 km) from analysis of 40- to 92-km SME global temperature profiles, J. Geophys. Res., 99(D9), 190001–19020, 1994.

  8. Collins, R. L., M. C. Kelley, M. J. Nicolls, C. Ramos, T. Hou, T. E. Stern, K. Mizutani, and T. Itabe, Simultaneous lidar observations of a noctilucent cloud and an internal wave in the polar mesosphere, J. Geophys. Res., 108(D8), 8435, doi:10.1029/2002JD002427, 2003.

  9. Cutler, L. J., R. L. Collins, K. Mizutani, and T. Itabe, Rayleigh lidar observations of mesospheric inversion layers at Poker Flat, Alaska (65°N, 147°W), Geophys. Res. Lett., 28(8), 1467–1470, 2001.

  10. Donovan, D. P., J. A. Whiteway, and A. I. Carswell, Correction for nonlinear photon-counting effects in lidar systems, App. Opt., 32(33), 6742–6753, 1993.

  11. Duck, T. J., J. A. Whiteway, and A. I. Carswell, A detailed record of high Arctic middle atmospheric temperatures, J. Geophys. Res., 105(D18), 22,909–22,918, 2000.

  12. Elterman, L., The measurement of stratospheric density distribution with the searchlight technique, J. Geophys. Res., 56(4), 509–520, 1951.

  13. Gerrard, A. J., T. J. Kane, and J. Thayer, Year-round temperature and wave measurements of the Arctic middle atmosphere for 1995–1998, in Atmospheric science across the stratopause, edited by D. E. Siskind, S. D. Eckermann, and M. E. Summers, AGU Monograph, 123, 200

  14. Gerrard, A. J., T. J. Kane, J. P. Thayer, T. J. Duck, J. A. Whiteway, and J. Fiedler, Synoptic scale study of the Arctic polar vortex’s influence on the middle atmosphere, 1, Observations, J. Geophys. Res., 107(D16), 4276, doi:10.1029/2001JD000681, 2002.

  15. Harvey, V. L., R. B. Pierce, T. D. Fairlie, and M. H. Hitchman, A climatology of stratospheric polar vortices and anticyclones, J. Geophys. Res., 107(D20), 4442, doi:10.1029/2001JD001471, 2002.

  16. Hedin, A. E., Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res., 96(A2), 1159, 1991.

  17. Hernandez, G., Climatology of the upper mesosphere temperature above South Pole (90°S): Mesospheric cooling in 2002, Geophys. Res. Lett., 30(10), 1535, doi:10.1029/2003GL016887, 2003.

  18. Hitchman, M. H., J. C. Gille, C. D. Rogers, and G. Brasseur, The separated polar winter stratopause: A gravity wave driven climatological feature, J. Atmos. Sci., 46(3), 1989.

  19. Labitzke, K., Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter, J. Atmos. Sci., 29(4), 756–766, 1972.

  20. Leblanc, T., A. Hauchecorne, M.-L. Chanin, C. Rogers, F. Taylor, and N. Livesey, Mesospheric temperature inversions as seen by ISAMS in December 2001, Geophys. Res. Lett., 22(12), 1485–1488, 1995.

  21. Leblanc, T., I. S. McDermid, A. Hauchecorne, and P. Keckhut, Evaluation of optimization of lidar temperature analysis algorithms using simulated data, J. Geophys. Res., 103(D6), 6177–6187, 1998.

  22. Lubken, F.-J., Thermal structure of the Arctic summer mesosphere, J. Geophys. Res., 104(D8), 9135–9149, 1999.

  23. Lübken, F.-J. and U. von Zahn, Thermal structure of the mesopause region at polar latitudes, J. Geophys. Res., 96(D11), 20841–20857, 1991.

  24. Manney, G. L., K. Kruger, J. L. Sabutis, S. A. Sena, and S. Pawson, The remarkable 2003–2004 winter and other recent winters in the Arctic stratosphere since the late 1990s, J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367, 2005.

  25. Manney, G. L., W. H. Daffer, K. B. Strawbridge, K. A. Walker, C. D. Boone, P. F. Bernath, T. Kerzenmacher, M. J. Schwartz, K. Strong, R. J. Sica, K. Kruger, H. C. Pumphrey, L. Froidevaux, A. Lambert, M. L. Santee, N. J. Livesey, E. E. Remsberg, M. G. Mlynczak, and J. R. Russell III, The high Arctic in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas evolution, Atmos. Chem. Phys., 8, 505–522, 2008a.

  26. Manney, G. L., K. Krueger, S. Pawson, K. Minschwaner, M. J. Schwartz, W. Daffer, N. J. Livesey, M. G. Mlynczak, E. Remsberg, J. M. Russell, and J. W. Waters, The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses, J. Geophys. Res., doi:10.1029/2007JD009097, 2008b (in press).

  27. Mertens, C. J., M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell III, Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 mm Earth limb emission under non-LTE conditions, Geophys. Res. Lett., 28(7), 1391–1394, 2001.

  28. Mertens, C. J., F. J. Schmidlin, R. A. Goldberg, E. E. Remsberg, W. D. Pesnell, J. M. Russell III, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, and L. L. Gordley, SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign, Geophys. Res. Lett., 31(3), L03105, doi:10.1029/2003GL018605, 2004.

  29. Mizutani, K., T. Itabe, M. Yasui, T. Aoki, Y. Murayama, and R. L. Collins, Rayleigh and Rayleigh Doppler lidars for the observations of the Arctic middle atmosphere, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E83-B, 2003, 2000.

  30. Murayama, Y., M. Ishii, M. Kubota, M. Hirotaka, K. Mizutani, S. Ochiai, Y. Kasai, S. Kawamaura, Y. Tanaka, H. Masuko, T. Iguchi, H. Kumagai, T. Kikuchi, K. Sata, R. L. Collins, B. J. Watkins, M. Conde, W. B. Bristow, and R. W. Smith, Comprehensive Arctic atmosphere observing system and observed results for system performance demonstration, J. Nat. Instit. Info. Comms. Tech, 54(1/2), 5–16, 2007.

  31. Nadakuditi, S., Spectral estimation of wave-driven fluctuations in Rayleigh lidar temperature measurements, MS Thesis, University of Alaska Fairbanks, 2005.

  32. Papoulis, A. and S. U. Pillai, Probability, Random Variables, and Stochastic Processes, fourth edition, 852 pp., McGraw-Hill, New York, 2002.

  33. Pawson, S., K. Kodera, K. Hamilton, T. G. Shepherd, S. R. Beagley, B. A. Boville, J. D. Farrara, T. D. A. Fairlie, A. Kitoh, W. A. Lahoz, U. Langematz, E. Manzini, D. H. Rind, A. A. Scaife, K. Shibata, P. Simon, R. Swinbank, L. Takacs, R. J. Wilson, J. A. Al-Saadi, M. Amodei, M. Chiba, L. Coy, J. de Grandpré, R. S. Eckman, N. Fiorino, W. L. Grose, H. Koide, J. N. Koshyk, D. Li, J. Lerner, J. D. Mahlman, N. A. McFarlane, C. R. Mechoso, A. Molod, A. O’Neill, R. B. Pierce, W. J. Randel, R. B. Rood, and F. Wu, The GCM-reality intercomparison project for SPARC (GRIPS): Scientific issues and initial results, Bull. Am. Meteor. Soc., 81(4), 781–796, 2000.

  34. Pratt, W. K., Laser communications systems, 271 pp., Wiley, New York, 1969.

  35. Ramaswamy, V., M.-L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J.-J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, Stratospheric temperature trends: Observations and model simulations, Rev. Geophys., 39(1), doi:10.1029/1999RG000065, 2001.

  36. Randel, W., P. Udelhofen, E. Fleming, M. Geller, M. Gelman, K. Hamilton, D. Karoly, D. Ortland, S. Pawson, R. Swinbank, F. Wu, M. Baldwin, M.-L. Chanin, P. Keckhut, K. Labitzke, E. Remsberg, A. Simmons, and D. Wu, The SPARC intercomparison of middle- atmosphere climatologies, J. Climate, 17(5), 986–1003, 2004.

  37. Russell, J. M. III, M. G. Mlynczak, L. L. Gordley, J. Tansock, and R. Esplin, An overview of the SABER experiment and preliminary calibration results, Proceedings of the SPIE, 44th Annual Meeting, Denver, Colorado, July 18–23, 3756, 277–288, 1999.

  38. Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, A stratospheric influence on the winter NAO and North Atlantic surface climate, Geophys. Res. Lett., 32(18), L18715, doi:10.1029/2005GL023226, 2005.

  39. Schoeberl, M. R., L. R. Lait, P. A. Newman, and J. E. Rosenfeld, The structure of the polar vortex, J. Geophys. Res., 97(D8), 7859–7882, 1992.

  40. Senft, D. C., G. C. Papen, C. S. Gardner, J. R. Yu, D. A. Kreuger, and C. Y. She, Seasonal variations of the thermal structure of the mesopause region at Urbana, IL (40°N, 88°W) and Ft. Collins, CO (41°N, 105°W), Geophys. Res. Lett., 21(9), 821–824, 1994.

  41. Sica, R. J., M. R. M. Izawa, K. A. Walker, C. Boone, S. V. Petelina, P. S. Argall, P. Bernath, G. B. Burns, V. Catoire, R. L. Collins, W. H. Daffer, C. De Clercq, Z. Y. Fan, B. J. Firanski, W. J. R. French, P. Gerard, M. Gerding, J. Granville, J. L. Innis, P. Keckhut, T. Kerzenmacher, A. R. Klekociuk, E. Kyrö, J. C. Lambert, E. J. Llewellyn, G. L. Manney, I. S. McDermid, K. Mizutani, Y. Murayama, C. Piccolo, P. Raspollini, M. Ridolfi, C. Robert, W. Steinbrecht, K. B. Strawbridge, K. Strong, R. Stübi, and B. Thurairajah, Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements, Atmos. Chem. Phys., 8, 35–62, 2008.

  42. Siskind, D. E., L. Coy, and P. Espy, Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument, Geophys. Res. Lett., 32, L09804, doi:110.1029/2005GL022399, 2005.

  43. Siskind, D. E., S. D. Eckermann, L. Coy, J. P. McCormack, and C. E. Randall, On recent interannual variability of the Arctic winter mesosphere: Implications for tracer decent, Geophys. Res. Lett., 34, L09806, doi:10.1029/2007GL029293, 2007.

  44. Solomon, S., Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37(3), doi:10.1029/1999RG900008, 1999.

  45. SPARC, 2002: SPARC Intercomparison of Middle Atmosphere Climatologies, SPARC Rep. 3, 96 pp., 2002.

  46. Wang, W., Spectral estimation of signal and noise power in Rayleigh lidar measurements of the middle atmosphere, MS Thesis, University of Alaska Fairbanks, 2003.

  47. WMO: Scientific assessment of ozone depletion: 2006, WMO report No. 50, U. N. Environ. Program, Geneva, Switzerland, 2007.

Download references

Author information

Correspondence to Brentha Thurairajah.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thurairajah, B., Collins, R.L. & Mizutani, K. Multi-year temperature measurements of the middle atmosphere at Chatanika, Alaska (65°N, 147°W). Earth Planet Sp 61, 755–764 (2009) doi:10.1186/BF03353182

Download citation

Key words

  • Circulation
  • mesosphere
  • stratosphere
  • Arctic
  • planetary waves
  • Rayleigh lidar