Skip to main content

Multi-year temperature measurements of the middle atmosphere at Chatanika, Alaska (65°N, 147°W)

Abstract

Over an eight-year period (1997–2005) Rayleigh lidar temperature measurements of the stratosphere and mesosphere (40–80 km) have been made at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). The Rayleigh lidar measurements have been made between mid-August and mid-May. These measurements have yielded a total of approximately 904 hours of temperature measurements of the middle atmosphere over 116 nights. The seasonal evolution of the middle atmosphere shows an annual cycle with maximum in summer below 60 km and a reversal of the cycle with minimum in summer above 60 km. The monthly mean stratopause has a highest temperature of 273 K at an altitude of 47.5 km in May and a lowest temperature of 243 K at an altitude of 54.7 km in January. However, nightly stratopause temperatures in January and December are sometimes warmer than those in May and August. An elevated stratopause (>65 km) is observed on 5 occasions in 41 observations in January and February. The Chatanika measurements are compared with five other Arctic data sets and models. The upper stratosphere at this site is slightly colder than the zonal mean as well as sites in Greenland and Scandinavia with the largest differences found in January. We discuss the wintertime temperatures in the upper stratosphere and lower mesosphere in terms of the position of the polar vortex and the increased occurrence of stratospheric warming events during the 1997–2005 observation period.

References

  • Allen, D. R., R. M. Bevilacqua, G. E. Nedoluha, C. E. Randall, and G. L. Manney, Unusual stratospheric transport and mixing during the 2002 Antarctic winter, Geophys. Res. Lett., 30(12), 1599, doi:10.1029/2003GL017117, 2003.

    Article  Google Scholar 

  • Andrews, D. G., J. R. Holton, and C. B. Leovy, Middle atmosphere dynamics, 489 pp., Academic Press Inc., New York, 1987.

    Google Scholar 

  • Baldwin, M. P. and T. J. Dunkerton, Propagation of Arctic oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104(D24), 30937–30946, 1999.

    Article  Google Scholar 

  • Baldwin, M. P., M. Dameris, and T. G. Shepherd, How will the stratosphere affect climate change, Science, 316, 1576–1577, 2007.

    Article  Google Scholar 

  • Beaumont, K., SABER: Sounding of the atmosphere using broadband emission radiometry, http://saber.gats-inc.com/, accessed June, 2007.

    Google Scholar 

  • Boville, B. A., The influence of the polar night jet on the tropospheric circulation in a GCM, J. Atmos. Sci., 41(7), 1132–1142, 1984.

    Article  Google Scholar 

  • Clancy, R. T., D. W. Rusch, and M. T. Callan, Temperature minima in the average thermal structure of the middle mesosphere (70–80 km) from analysis of 40- to 92-km SME global temperature profiles, J. Geophys. Res., 99(D9), 190001–19020, 1994.

    Google Scholar 

  • Collins, R. L., M. C. Kelley, M. J. Nicolls, C. Ramos, T. Hou, T. E. Stern, K. Mizutani, and T. Itabe, Simultaneous lidar observations of a noctilucent cloud and an internal wave in the polar mesosphere, J. Geophys. Res., 108(D8), 8435, doi:10.1029/2002JD002427, 2003.

    Article  Google Scholar 

  • Cutler, L. J., R. L. Collins, K. Mizutani, and T. Itabe, Rayleigh lidar observations of mesospheric inversion layers at Poker Flat, Alaska (65°N, 147°W), Geophys. Res. Lett., 28(8), 1467–1470, 2001.

    Article  Google Scholar 

  • Donovan, D. P., J. A. Whiteway, and A. I. Carswell, Correction for nonlinear photon-counting effects in lidar systems, App. Opt., 32(33), 6742–6753, 1993.

    Article  Google Scholar 

  • Duck, T. J., J. A. Whiteway, and A. I. Carswell, A detailed record of high Arctic middle atmospheric temperatures, J. Geophys. Res., 105(D18), 22,909–22,918, 2000.

    Article  Google Scholar 

  • Elterman, L., The measurement of stratospheric density distribution with the searchlight technique, J. Geophys. Res., 56(4), 509–520, 1951.

    Article  Google Scholar 

  • Gerrard, A. J., T. J. Kane, and J. Thayer, Year-round temperature and wave measurements of the Arctic middle atmosphere for 1995–1998, in Atmospheric science across the stratopause, edited by D. E. Siskind, S. D. Eckermann, and M. E. Summers, AGU Monograph, 123, 200

    Google Scholar 

  • Gerrard, A. J., T. J. Kane, J. P. Thayer, T. J. Duck, J. A. Whiteway, and J. Fiedler, Synoptic scale study of the Arctic polar vortex’s influence on the middle atmosphere, 1, Observations, J. Geophys. Res., 107(D16), 4276, doi:10.1029/2001JD000681, 2002.

    Article  Google Scholar 

  • Harvey, V. L., R. B. Pierce, T. D. Fairlie, and M. H. Hitchman, A climatology of stratospheric polar vortices and anticyclones, J. Geophys. Res., 107(D20), 4442, doi:10.1029/2001JD001471, 2002.

    Article  Google Scholar 

  • Hedin, A. E., Extension of the MSIS thermospheric model into the middle and lower atmosphere, J. Geophys. Res., 96(A2), 1159, 1991.

    Article  Google Scholar 

  • Hernandez, G., Climatology of the upper mesosphere temperature above South Pole (90°S): Mesospheric cooling in 2002, Geophys. Res. Lett., 30(10), 1535, doi:10.1029/2003GL016887, 2003.

    Google Scholar 

  • Hitchman, M. H., J. C. Gille, C. D. Rogers, and G. Brasseur, The separated polar winter stratopause: A gravity wave driven climatological feature, J. Atmos. Sci., 46(3), 1989.

    Google Scholar 

  • Labitzke, K., Temperature changes in the mesosphere and stratosphere connected with circulation changes in winter, J. Atmos. Sci., 29(4), 756–766, 1972.

    Article  Google Scholar 

  • Leblanc, T., A. Hauchecorne, M.-L. Chanin, C. Rogers, F. Taylor, and N. Livesey, Mesospheric temperature inversions as seen by ISAMS in December 2001, Geophys. Res. Lett., 22(12), 1485–1488, 1995.

    Article  Google Scholar 

  • Leblanc, T., I. S. McDermid, A. Hauchecorne, and P. Keckhut, Evaluation of optimization of lidar temperature analysis algorithms using simulated data, J. Geophys. Res., 103(D6), 6177–6187, 1998.

    Article  Google Scholar 

  • Lubken, F.-J., Thermal structure of the Arctic summer mesosphere, J. Geophys. Res., 104(D8), 9135–9149, 1999.

    Google Scholar 

  • Lübken, F.-J. and U. von Zahn, Thermal structure of the mesopause region at polar latitudes, J. Geophys. Res., 96(D11), 20841–20857, 1991.

    Article  Google Scholar 

  • Manney, G. L., K. Kruger, J. L. Sabutis, S. A. Sena, and S. Pawson, The remarkable 2003–2004 winter and other recent winters in the Arctic stratosphere since the late 1990s, J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367, 2005.

    Google Scholar 

  • Manney, G. L., W. H. Daffer, K. B. Strawbridge, K. A. Walker, C. D. Boone, P. F. Bernath, T. Kerzenmacher, M. J. Schwartz, K. Strong, R. J. Sica, K. Kruger, H. C. Pumphrey, L. Froidevaux, A. Lambert, M. L. Santee, N. J. Livesey, E. E. Remsberg, M. G. Mlynczak, and J. R. Russell III, The high Arctic in extreme winters: vortex, temperature, and MLS and ACE-FTS trace gas evolution, Atmos. Chem. Phys., 8, 505–522, 2008a.

    Article  Google Scholar 

  • Manney, G. L., K. Krueger, S. Pawson, K. Minschwaner, M. J. Schwartz, W. Daffer, N. J. Livesey, M. G. Mlynczak, E. Remsberg, J. M. Russell, and J. W. Waters, The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses, J. Geophys. Res., doi:10.1029/2007JD009097, 2008b (in press).

    Google Scholar 

  • Mertens, C. J., M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell III, Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 mm Earth limb emission under non-LTE conditions, Geophys. Res. Lett., 28(7), 1391–1394, 2001.

    Article  Google Scholar 

  • Mertens, C. J., F. J. Schmidlin, R. A. Goldberg, E. E. Remsberg, W. D. Pesnell, J. M. Russell III, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, and L. L. Gordley, SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign, Geophys. Res. Lett., 31(3), L03105, doi:10.1029/2003GL018605, 2004.

    Article  Google Scholar 

  • Mizutani, K., T. Itabe, M. Yasui, T. Aoki, Y. Murayama, and R. L. Collins, Rayleigh and Rayleigh Doppler lidars for the observations of the Arctic middle atmosphere, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E83-B, 2003, 2000.

    Google Scholar 

  • Murayama, Y., M. Ishii, M. Kubota, M. Hirotaka, K. Mizutani, S. Ochiai, Y. Kasai, S. Kawamaura, Y. Tanaka, H. Masuko, T. Iguchi, H. Kumagai, T. Kikuchi, K. Sata, R. L. Collins, B. J. Watkins, M. Conde, W. B. Bristow, and R. W. Smith, Comprehensive Arctic atmosphere observing system and observed results for system performance demonstration, J. Nat. Instit. Info. Comms. Tech, 54(1/2), 5–16, 2007.

    Google Scholar 

  • Nadakuditi, S., Spectral estimation of wave-driven fluctuations in Rayleigh lidar temperature measurements, MS Thesis, University of Alaska Fairbanks, 2005.

    Google Scholar 

  • Papoulis, A. and S. U. Pillai, Probability, Random Variables, and Stochastic Processes, fourth edition, 852 pp., McGraw-Hill, New York, 2002.

    Google Scholar 

  • Pawson, S., K. Kodera, K. Hamilton, T. G. Shepherd, S. R. Beagley, B. A. Boville, J. D. Farrara, T. D. A. Fairlie, A. Kitoh, W. A. Lahoz, U. Langematz, E. Manzini, D. H. Rind, A. A. Scaife, K. Shibata, P. Simon, R. Swinbank, L. Takacs, R. J. Wilson, J. A. Al-Saadi, M. Amodei, M. Chiba, L. Coy, J. de Grandpré, R. S. Eckman, N. Fiorino, W. L. Grose, H. Koide, J. N. Koshyk, D. Li, J. Lerner, J. D. Mahlman, N. A. McFarlane, C. R. Mechoso, A. Molod, A. O’Neill, R. B. Pierce, W. J. Randel, R. B. Rood, and F. Wu, The GCM-reality intercomparison project for SPARC (GRIPS): Scientific issues and initial results, Bull. Am. Meteor. Soc., 81(4), 781–796, 2000.

    Article  Google Scholar 

  • Pratt, W. K., Laser communications systems, 271 pp., Wiley, New York, 1969.

    Google Scholar 

  • Ramaswamy, V., M.-L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J.-J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, Stratospheric temperature trends: Observations and model simulations, Rev. Geophys., 39(1), doi:10.1029/1999RG000065, 2001.

    Google Scholar 

  • Randel, W., P. Udelhofen, E. Fleming, M. Geller, M. Gelman, K. Hamilton, D. Karoly, D. Ortland, S. Pawson, R. Swinbank, F. Wu, M. Baldwin, M.-L. Chanin, P. Keckhut, K. Labitzke, E. Remsberg, A. Simmons, and D. Wu, The SPARC intercomparison of middle- atmosphere climatologies, J. Climate, 17(5), 986–1003, 2004.

    Article  Google Scholar 

  • Russell, J. M. III, M. G. Mlynczak, L. L. Gordley, J. Tansock, and R. Esplin, An overview of the SABER experiment and preliminary calibration results, Proceedings of the SPIE, 44th Annual Meeting, Denver, Colorado, July 18–23, 3756, 277–288, 1999.

    Google Scholar 

  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, A stratospheric influence on the winter NAO and North Atlantic surface climate, Geophys. Res. Lett., 32(18), L18715, doi:10.1029/2005GL023226, 2005.

    Article  Google Scholar 

  • Schoeberl, M. R., L. R. Lait, P. A. Newman, and J. E. Rosenfeld, The structure of the polar vortex, J. Geophys. Res., 97(D8), 7859–7882, 1992.

    Article  Google Scholar 

  • Senft, D. C., G. C. Papen, C. S. Gardner, J. R. Yu, D. A. Kreuger, and C. Y. She, Seasonal variations of the thermal structure of the mesopause region at Urbana, IL (40°N, 88°W) and Ft. Collins, CO (41°N, 105°W), Geophys. Res. Lett., 21(9), 821–824, 1994.

    Article  Google Scholar 

  • Sica, R. J., M. R. M. Izawa, K. A. Walker, C. Boone, S. V. Petelina, P. S. Argall, P. Bernath, G. B. Burns, V. Catoire, R. L. Collins, W. H. Daffer, C. De Clercq, Z. Y. Fan, B. J. Firanski, W. J. R. French, P. Gerard, M. Gerding, J. Granville, J. L. Innis, P. Keckhut, T. Kerzenmacher, A. R. Klekociuk, E. Kyrö, J. C. Lambert, E. J. Llewellyn, G. L. Manney, I. S. McDermid, K. Mizutani, Y. Murayama, C. Piccolo, P. Raspollini, M. Ridolfi, C. Robert, W. Steinbrecht, K. B. Strawbridge, K. Strong, R. Stübi, and B. Thurairajah, Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements, Atmos. Chem. Phys., 8, 35–62, 2008.

    Article  Google Scholar 

  • Siskind, D. E., L. Coy, and P. Espy, Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument, Geophys. Res. Lett., 32, L09804, doi:110.1029/2005GL022399, 2005.

    Article  Google Scholar 

  • Siskind, D. E., S. D. Eckermann, L. Coy, J. P. McCormack, and C. E. Randall, On recent interannual variability of the Arctic winter mesosphere: Implications for tracer decent, Geophys. Res. Lett., 34, L09806, doi:10.1029/2007GL029293, 2007.

    Article  Google Scholar 

  • Solomon, S., Stratospheric ozone depletion: A review of concepts and history, Rev. Geophys., 37(3), doi:10.1029/1999RG900008, 1999.

    Google Scholar 

  • SPARC, 2002: SPARC Intercomparison of Middle Atmosphere Climatologies, SPARC Rep. 3, 96 pp., 2002.

  • Wang, W., Spectral estimation of signal and noise power in Rayleigh lidar measurements of the middle atmosphere, MS Thesis, University of Alaska Fairbanks, 2003.

    Google Scholar 

  • WMO: Scientific assessment of ozone depletion: 2006, WMO report No. 50, U. N. Environ. Program, Geneva, Switzerland, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brentha Thurairajah.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Thurairajah, B., Collins, R.L. & Mizutani, K. Multi-year temperature measurements of the middle atmosphere at Chatanika, Alaska (65°N, 147°W). Earth Planet Sp 61, 755–764 (2009). https://doi.org/10.1186/BF03353182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353182

Key words